
World Wide Web
https://doi.org/10.1007/s11280-019-00686-w

Mining top-k sequential patterns in transaction
database graphs

A new challenging problem and a sampling-based approach

Mingtao Lei1 · Lingyang Chu2 ·Zhefeng Wang3 · Jian Pei2 ·Caifeng He4 ·Xi Zhang1 ·
Binxing Fang1

Received: 25 September 2018 / Revised: 15 February 2019 / Accepted: 25 April 2019 /

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In many real world networks, a vertex is usually associated with a transaction database
that comprehensively describes the behaviour of the vertex. A typical example is a social
network, where the behaviours of every user are depicted by a transaction database that
stores her daily posted contents. Specifically, a transaction database consists of a collection
of transactions, where each transaction corresponds to a piece of tweet. For each trans-
action, it consists of a set of items, where each item may correspond to a keyword or a
piece of video clip contained in this tweet. To model such type of scenario, we propose
the novel notion of the transaction database graph, where each vertex is associated with a
transaction database. Every path of the graph is a sequence of vertices that induces multi-
ple sequences of transactions. The sequences of transactions induced by all of the paths in
the graph form an extremely large sequence database. Finding frequent sequential patterns
from such sequence database discovers interesting subsequences that frequently appear in
many paths of the network. Our goal is to find the top-k frequent sequential patterns in
the sequence database induced from a transaction database graph. However, it is challeng-
ing since the sequence database induced by a transaction database graph is too large to be
explicitly induced and stored, and finding the top-k frequent sequential patterns is #P-hard.
To tackle this problem, we propose an efficient two-step sampling algorithm that approxi-
mates the top-k frequent sequential patterns with the provable quality guarantee. Extensive
experimental results on synthetic and real-world data sets demonstrate the effectiveness and
efficiency of our method.

Keywords Graph · Sequential pattern mining · Sampling · Approximation

� Xi Zhang
zhangx@bupt.edu.cn

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-019-00686-w&domain=pdf
mailto: zhangx@bupt.edu.cn

World Wide Web

1 Introduction

Graphs and networks are popularly used to model advanced applications, such as social
network analysis and communication network fault detection. More often than not, rich data
exists in such graph and network applications. Consequently, graphs and networks in such
applications have to be enriched by capturing more information in vertices and edges, such
as labeled graphs [33] and attributed graphs [18], where in a labeled graph each vertex is
associated with a unique label, and in an attributed graph each vertex is associated with an
attribute vector. Mining various types of patterns in labeled graphs and attributed graphs has
enjoyed interesting applications [9, 13, 30].

In some advanced graph applications, a vertex may contain much more information than
just a label or an attribute vector. Such rich information on each vertex more often than not is
better captured by a transaction database. For example, in content-rich social networks, such
as Twitter, YouTube, WeChat and DBLP, a vertex modelling a user can be associated with
a transaction database that stores multiple transactions of contents, where each transaction
stores a tweet, a video clip, a post or a publication. As another example, in a road network of
point of interests (POIs), each vertex representing a POI can be associated with a transaction
database of visitor comments, where each transaction stores the keywords of one visitor
comment.

We also give an example in communication networks, where each communication node
is associated with an error log. When network faults occur, many communication nodes will
produce error messages collected by their error logs. One specific error in one node may
affect a related node and make it produce error messages too. Obviously, these error logs
cannot merely be represented as labels or attribute vectors as they have very rich contents.
To address this issue, a novel graph structure is required. In particular, a vertex represents a
communication node, and a directed edge between two vertices indicates the data transmis-
sion. Each vertex can be associated with a transaction database representing the error log,
and each transaction in the transaction database consists of history error codes.

To better model such graphs with rich information in vertices, we propose a novel notion
of transaction database graph, where each vertex is associated with a transaction database.
Comparing with the label and the attribute vector on each vertex, the transaction database
associated with each vertex naturally and concisely captures much more valuable infor-
mation, such as the co-occurrences of items and the frequencies of patterns (i.e., set of
items).

Finding interesting patterns in a transaction database graph with rich contents in ver-
tices may lead to informative analytic results. For example, by mining sequential patterns
(i.e., frequent subsequences) from all possible random walks in a social network with rich
contents in vertices, one may find interesting interaction patterns among users. Specifi-
cally, in the first example of a social network given above, where each vertex, as a user,
is associated with a transaction database storing the daily posts composed by the user, and
each transaction stores a set of keywords of one post. In this transaction database graph, a
sequential pattern 〈(AI, Alpha Go) → (deep learning, deepmind) → (AI, medical doctor)〉
indicates that it happens frequently that a user who writes about AI and Alpha Go con-
nects to another user who writes about deep learning and deep mind, and further connects
to a third user who writes about AI and medical doctor. It is likely that those topics may
stimulate one and another. In the example of communication networks given above, find-
ing interesting patterns from the error logs can facilitate the discovery of error patterns
among related communication nodes, and thus enables the administrators to better diag-
nose the network and identify the problems to fix. For example, a sequential pattern 〈(Error

World Wide Web

Code 001, Error Code 002) → (Error Code 003) → (Error Code 004)〉 indicates that it hap-
pens frequently that one node who produces Error Code 001 and Error Code 002 makes a
neighboring node produce Error Code 003, and further makes a third node produce Error
Code 004.

The task illustrated in the above examples is very different from traditional sequential
pattern mining. Specifically, instead of searching for patterns from a sequence database,
here we are given a transaction database graph, where each vertex is associated with a
transaction database, and our goal is to find sequential patterns that are frequently induced
by all possible random walks of the whole graph.

As we want to find sequential patterns, a natural question is whether many existing
sequential pattern mining methods, such as PrefixSpan [17], can be extended to solve this
problem? Unfortunately, there is no a straightforward way to apply existing methods on a
transaction database graph, since none of those methods take a transaction database graph
as input and the number of transaction sequences induced by all possible random walks of
a transaction database graph is exponential with respect to the number of vertices.

To the best of our knowledge, our study is the first to tackle the problem of finding top-k
sequential patterns in transaction database graphs. Our major idea is to maintain a sample of
random transaction sequences so that we can approximate the top-k patterns with provable
quality guarantees. We make several contributions.

First, we formulate the problem of mining top-k sequential patterns in transaction
database graphs. A transaction database graph in our problem is defined as a graph where
each vertex is associated with a transaction database and a transaction is a set of items.
Different from the traditional sequential pattern mining problem that aims to find frequent
patterns in a given sequence database, we are interested in finding frequent sequential pat-
terns in the extremely large sequence database that is induced by all possible random walks
of the whole transaction database graph. The major challenge of our problem is that the
sequence database of a large transaction database graph is usually too large to be explicitly
induced and stored. By reducing from the conventional sequential pattern mining problem,
we prove that our problem is #P-hard.

Second, we propose an exact sequential pattern finding algorithm, which is also used as
a baseline. By fixing the path length l and an integer k, we first collect all of the length-l
transaction sequences and then apply one of the state-of-the-art mining techniques to obtain
the exact top-k patterns. However, when the size of the transaction database graph increases,
this approach suffers from the expensive time and space cost, since the total number of
transaction sequences is exponential with respect to the number of vertices.

Third, we carefully design a two-step sampling framework that significantly improves
the mining efficiency. We first sample a set of transaction sequences from the transaction
database graph by a two-step sampling algorithm. Using the sampled transaction sequences,
we design an unbiased estimator to approach the frequencies of sequential patterns in the
transaction database graph with provable guarantees on the estimation error. Based on the
estimator, we introduce the weighting mechanism for the sampled transaction sequences.

Last, we conduct extensive experiments on both synthetic and real-world data sets.
The results demonstrate the effectiveness and efficiency of the proposed method. We also
conduct a case study to show meaningful sequential patterns mined from the Aminer [27].

The rest of the paper is organized as follows. Section 2 reviews the related work. We
formulate the problem and present a baseline in Section 3. In Section 4, we develop our
two-step sampling method and give the upper bound of sample complexity for our proposed
algorithm. A systematic empirical study is reported in Section 5. We conclude our work in
Section 6.

World Wide Web

2 Related work

To the best of our knowledge, mining sequential patterns in transaction database graphs is
a new problem, which has not been touched in literature. It is related to sequential pattern
mining and sampling methods.

2.1 Sequential patternmining

Sequential pattern mining is a well-studied subject in data mining, which was first intro-
duced by [1]. It finds all frequent subsequences from a database of sequences and has
enjoyed many applications, such as analyzing shopping patterns [24], classification [32]
and understanding user behavior [36]. The Apriori-based algorithms, such as GSP [26] and
SPADE [34], improve the efficiency of sequential pattern mining [1] by reducing the search
space using the anti-monotonicity of sequential patterns. Distributed methods were also pro-
posed to accelerate the mining processing [11]. To avoid generating candidate sequences,
Han et al. [12] proposed FreeSpan. Later, Pei et al. [17] developed PrefixSpan. The two
methods mine sequential patterns by sequence database projection and pattern growth.

Choosing an appropriate support threshold for sequential pattern mining is challenging in
practice [10]. Tzvetkov et al. [31] proposed TSP, which aims to mine top-k frequent closed
sequential patterns whose lengths pass a threshold. Closed sequential patterns are concise
representations of sequential patterns.

Liu et al. [16] proposed to proactively reduce the representation of sequences to uncover
significant, hidden temporal structures. Their key idea was to decrease the level of granu-
larity of symbols in sequences by clustering the symbols. They claimed that, in this way,
symbolic sequences would be represented as numerical sequences or point clouds in the
Euclidean space which reduces the time cost. However, this reduction does not change the
hardness of the sequential pattern mining problem and may lose some interesting patterns
due to the information loss caused by embedding.

There are many existing sequential pattern mining methods. A thorough review of the
subject is far beyond the capacity of this paper. Dong and Pei [8] provided a comprehensive
review. Mining sequential patterns from transaction database graphs is a new problem. As
explained in Section 1, the existing methods cannot be directly applied on a transaction
database graph.

2.2 Samplingmethods

Sampling and approximation methods [7, 28] have been widely used in pattern mining to
tackle large data sets or expedite mining. Sampling methods have been widely used in pat-
tern mining [4] and association rule mining [29], which reduce the amount of computation
dramatically and achieve provable quality guarantees.

Raı̈ssi and Poncelet [20] proposed to ease the sequential pattern mining operations by
modeling the data as a continuous and potentially infinite stream. They used Hoeffding
concentration inequalities to prove a lower bound of the sample size. For reducing static
database access by constructing a random sample before mining, they extended the static
sampling analysis to the data stream model. They also conducted a simple replacement algo-
rithm using an exponential bias function to regulate the sampling. Another study about static
sampling for patterns was proposed by [22]. They applied the statistical concept of Vapnik-
Chervonenkis (VC) dimension to develop a novel technique that provides tight bounds on
the sample size. The resulting sample size was linearly dependent on the VC-dimension

World Wide Web

of a range of space associated with the dataset to be mined. However, their method cannot
be straightforwardly extended to sample transaction sequences from a transaction database
graph, since it is not applicable to deal with the transaction sequences.

Progressive sampling methods are also widely used. Pietracaprina et al. [19] proposed to
mine top-k frequent itemsets through progressive sampling. They first presented an upper
bound on the sample size. Then they devised a progressive sampling approach that extracted
the top-k frequent itemsets from increasingly larger samples until suitable stopping condi-
tions were met or the upper bound was hit. Riondato and Upfal [23] introduced another
progressive sampling method with Rademacher Averages [2] for mining frequent itemsets.
This work studied the trade-off between the approximation quality and the sample size
using concepts and results from statistical learning theory [5], where the stopping condi-
tion was based on bounds to the empirical Rademacher average of the problem. However,
these methods focused on the conventional frequent itemset mining problem, and cannot be
directly extended to find sequential patterns in transaction database graphs.

Sampling transaction sequences from a transaction database graph is also related to graph
path sampling methods [21, 35]. For example, Zhang et al. [35] proposed Panther to measure
the similarity between vertices by sampling paths with random walk. However, Panther does
not consider transaction databases on vertices, thus it cannot be straightforwardly extended
to sampling transaction sequences from the transaction database graphs.

3 Problem definition and baseline

In this section, we define the problem formally and then present a baseline. We also show
that the problem is indeed #P-hard.

3.1 Problem definition

Let I be a set of items. An itemset X is a subset of I , that is, X ⊆ I . A transaction is a
tuple T = (tid, X), where t id is a unique transaction-id and X an itemset. A transaction
T = (tid, X) is said to contain itemset Y if Y ⊆ X. In such a case, we overload the subset
symbol and write Y ⊆ T . A transaction database T is a set of transactions.

A transaction database graph is a directed graph, denoted by G = (V ,E,T), where V is
a set of vertices, E = {(u, v) | u, v ∈ V } ⊆ V ×V is a set of directed edges and T is a set of
transaction databases. Each vertex v ∈ V is associated with a transaction database Tv ∈ T.
For the sake of simplicity, hereafter a transaction database graph is also called a graph.

A (directed) path p in a directed graph G is a sequence of vertices p = 〈v1, . . . , vh〉,
where (vi, vi+1) ∈ E (1 ≤ i < h), and the length of the path is len(p) = h− 1, the number
of edges in the path. In this paper, we consider simple paths only, that is, a vertex appears
in a path at most once. For two vertices vi, vj in G, the distance from vi to vj , denoted by
dist (vi, vj), is the length of the shortest path from vi to vj in G. For a vertex v ∈ V , the
l-neighborhood of v is Nl(v) = {vi | dist (v, vi) ≤ l}. We define the l-th order degree of v

as the number of vertices of distance l from v, that is,

dl(v) =
{

1 if l = 0
‖{vi | dist (v, vi) = l}‖ if l > 0

(1)

Apparently, for l > 0, dl(v) = ‖Nl(v) − Nl−1(v)‖.

World Wide Web

We are interested in sequential patterns carried by paths in a graph. Formally, a transac-
tion sequence in G, denoted by ts = 〈T1, . . . , Th〉, is a sequence of transactions such that
there exists a path p = 〈v1, . . . , vh〉 and Ti ∈ Tvi

for 1 ≤ i ≤ h. In such the case, we say ts

is supported by p and the length of ts is len(ts) = h − 1.
A sequential pattern s = 〈X1, . . . , Xh〉 is a series of itemsets and the length of the

sequential pattern is len(s) = h − 1. A transaction sequence ts = 〈T1, . . . , Th〉 contains a
sequential pattern s = 〈X1, . . . , Xh〉 if Xi ⊆ Ti for 1 ≤ i ≤ h. A sequential pattern is also
called a pattern.

Denote Dl as the set of all length-l transaction sequences supported by paths in G,
the frequency of pattern s in Dl , denoted by f (s), is the proportion of unique transaction
sequences in Dl that contain s.

Example 1 (Concepts) Figure 1 shows a graph G, where each vertex is associated with a
transaction database.

G has 7 vertices, which are v1, v2, v3, v4, v5, v6 and v7. We take vertex v1 as an exam-
ple. The transaction database associated with v1 contains three transactions T1, T2 and T3.
Specifically, T1 contains three items, which are i1, i2 and i3. In particular, in the example
of a social network, v1 and v2 would represent users, and the edge (v1, v2) indicates v1 fol-
lows v2. The transaction T1 corresponds to a piece of tweet, and the item i1 can represent a
keyword or a video clip in the tweet.

The 1-, 2- and 3-neighborhoods of v1 are N1(v1) = {v2, v3}, N2(v1) =
{v2, v3, v4, v5, v6} and N3(v1) = {v2, v3, v4, v5, v6, v7}, respectively. The first, second, and
third degrees of v1 are d1(v1) = 2, d2(v1) = 3 and d3(v1) = 1, respectively. Starting from
v1, there are 6 paths, p1 = 〈v1, v2〉, p2 = 〈v1, v3〉, p3 = 〈v1, v2, v4〉, p4 = 〈v1, v2, v5〉,
p5 = 〈v1, v3, v6〉 and p6 = 〈v1, v2, v4, v7〉. Since p6 is the only length-3 path in G, the
length-3 transaction sequence set D3 in G consists of all the transaction sequences supported
by p6.

Figure 2 shows the transaction sequences in D3.

Now, we are ready to define the Top-k Sequential Pattern Mining problem in Graph
(TSPMG) as follows.

Problem 1 (TSPMG) Given a graph G, an integer k > 0 and a fixed length l > 0, the
problem of finding the top-k sequential patterns is to find the top-k patterns of length l that
have the largest frequencies in Dl of G.

Figure 1 An example of a graph G, where each vertex is associated with a transaction database

World Wide Web

Figure 2 The set of length-3
transaction sequences D3 of the
graph G in Figure 1

Example 2 (TSPMG) Consider the graph G in Figure 1. Let k = 9 and l = 3. The top-9
length-3 patterns, which have the largest frequencies in D3 (shown in Figure 2), are listed
in Figure 3.

Table 1 summarizes the frequently used notations.

3.2 Hardness of the TSPMG problem

In this section, we analyze the hardness of the TSPMG problem. We define the Sequential
Pattern Counting problem in Graph (SPCG) and prove that the SPCG problem is #P-hard.
In the sequel, we prove that the TSPMG problem is at least as hard as the SPCG problem.

Problem 2 (SPCG) Given a transaction database graph G, a threshold α > 0 and a fixed
length l > 0, the problem of counting sequential patterns is to count the number of length-l
patterns with frequencies larger than α in Dl of G.

Figure 3 The top-9 length-3
frequent sequential patterns in
D3 of the graph G in Figure 1

World Wide Web

Table 1 Frequently used notations

Notation Description

dist (vi , vj) The distance from vi to vj .

di(v) The i-th order degree of v.

p A (directed) path in G, which is a sequence of vertices.

f (s) The real frequency of pattern s.

f̂ (s) The unbiased pattern frequency estimator.

Dl The set of all length-l transaction sequences in G.

Pl The set of all length-l paths in G.

Sl The set of sampled length-l transaction sequences.

I The set of all items in G.

Theorem 1 The SPCG problem is #P-hard.

Proof (sketch)
Given a sequence database SDB, for each sequence in the database that contains a list

of transactions, we can construct a graph that contains a single path such that a node is
set up for each transaction and the nodes are linked into a path according to the order of
transactions in the sequence. Moreover, for a single path T1 → T2 → · · · → Tl+1, we add
edges (Ti, Tj) for i < j . l(l−1)

2 edges are added on a path of length l. In this way, a sequence
in SDB is transformed into a directed acyclic graph (DAC).

Then, we combine all the DACs into a transaction database graph G. That is, the graph
is a collection of DACs, one representing a sequence in SDB. Thus, each node contains
a transaction database where there is only one transaction. Apparently, this reduction step
takes polynomial time.

It can be shown easily that a subsequence is a sequential pattern in SDB if and only if it
is a sequential pattern in the transaction database graph constructed.

Theorem 2 The TSPMG problem is at least as hard as the SPCG problem.

Proof We prove this by a Cook reduction from the SPCG problem. Denote by �(Dl, k) the
set of top-k length-l patterns in G. Let sk = �(Dl, k) \�(Dl, k − 1) be the pattern with the
k-th largest frequency f (sk) in Dl of G.

Given the oracle of the TSPMG problem, we can search for the parameter k that satisfies
f (sk) > α ≥ f (sk+1) by querying the oracle multiple times. Such k is exactly the answer
to the SPCG problem.

Let I be the set of all items in G. We have k ∈ [1, 2|I |(l+1)]. Thus, the time of a binary
search for k is in O(|I |(l + 1)). For each k, we can obtain sk and sk+1 by querying the
oracle to get �(Dl, k−1), �(Dl, k) and �(Dl, k+1); f (sk) and f (sk+1) can be computed
by linearly searching Dl in O(|V |(l+1)C(l+1)) time. Therefore, the overall time to solve the
SPCG problem is in O(|I |(l + 1)|V |(l+1)C(l+1)). Recall that l is the constant path length,
we know that the SPCG problem is Cook reducible to the TSPMG problem.

3.3 Baseline

Given a graph G, how can we find interesting patterns on directed paths? Intuitively, with
a given path length l, we can enumerate all paths in G and then extract all transaction

World Wide Web

sequences supported by the paths. Then, by applying traditional sequential pattern min-
ing techniques [1, 17], we can find the exact top-k sequential patterns among transaction
sequences. Algorithm 1 gives the details of this method.

The volume of Dl , denoted by |Dl |, is in O(|V |(l+1)C(l+1)), where |V | is the number of
vertices in G and C = maxvi∈V |Tvi

| is the maximum number of transactions in the trans-
action database of a single vertex of G. As a result, the baseline method is computationally
expensive due to the large amount of time and space needed to enumerate and store the
transaction sequences in Dl .

In the next section, we tackle this problem with an efficient sampling method that sig-
nificantly reduces the number of transaction sequences needs to search, and thus achieves
high-quality approximation results.

4 A fast sampling-basedmethod

The key idea of our fast sequential pattern mining method is to first estimate the pat-
tern frequencies using a set of transaction sequences sampled from G, then obtain the
top-k patterns using the estimated pattern frequencies. In this section, we first introduce
our two-step sampling framework that randomly samples transaction sequences. Then, we
provide an unbiased estimator to estimate pattern frequency using the sampled transac-
tion sequences. Last, we prove the upper bound of the complexity for the sampling-based
algorithm.

4.1 A two-step sampling framework

The two-step sampling framework involves a path sampling method that uniformly samples
a set of length-l paths from G and a transaction sequence sampling method that uniformly
samples transaction sequences from each sampled path.

Notice that, although the first step sampling perform uniform sampling of the paths on
the graph and the second step sampling perform uniform sampling of transaction sequence
on the sampled paths, respectively, the overall two-step sampling is not uniform with respect
to the length-l transaction sequences, since the numbers of transactions are different in
different vertices. As a result, we cannot directly mine frequent sequential patterns from
the sampled transaction sequences by simply using the support of patterns in the sam-
pled transaction sequences. However, as illustrated in Section 4.2, we can still mine the

World Wide Web

top-k sequential patterns by estimating the pattern frequencies with bounded estimation
error using a carefully designed unbiased estimator.

Denote by Pl the set of all length-l paths in G. The path sampling method samples a
length-l (l ≥ 1) path p = 〈v1, . . . , vq, . . . , vl+1〉 from Pl by progressively sampling an
ordered sequence of (l + 1) vertices, where each vertex vq in p is sampled with probability

P(vq) =
⎧⎨
⎩

P(v1) = dl(v1)∑
vj ∈V dl(vj)

q = 1

P(vq |vq−1) = dl−q+1(vq)

dl−q+2(vq−1)
2 ≤ q ≤ (l + 1)

(2)

Algorithm 2 gives the pseudocode of the path sampling step. We prove that Algorithm 2
conducts a uniform sampling on paths.

Theorem 3 Given a graph G and a path length l, Algorithm 2 uniformly samples a path p

from Pl .

Proof Since Pl is the set of all length-l paths in G, to show Algorithm 2 is uniform, we
need to prove that the probability of sampling a length-l path p is 1

|Pl | .
Denote by P(p) the probability of sampling a path p = 〈v1, . . . , vl+1〉 in G. According

to Algorithm 2 and (2), we have

P(p) = P(v1) × P(v2) × · · · × P(vl+1)

= P(v1) × P(v2|v1) × · · · × P(vl+1|vl)

= dl(v1)∑
vj ∈V dl(vj)

× dl−1(v2)

dl(v1)
× · · · × 1

d1(vl)

= 1∑
vj ∈V dl(vj)

= 1

|Pl | (3)

The theorem holds.

Algorithm 2 uniformly samples one path from all length-l paths in G. To sample a set of
length-l paths with replacement, we simply run Algorithm 2 multiple times.

Next, we introduce the transaction sequence sampling method. Denote by pi = 〈vi
1, . . . ,

vi
q , . . . , vi

l+1〉 the i-th length-l path sampled by Algorithm 2, the transaction sequence sam-

pling method in Algorithm 3 uniformly samples a transaction sequence tsi with probability
1∏l+1

q=1 |T
vq i | from all transaction sequences induced by pi .

World Wide Web

4.2 Unbiased pattern frequency estimator

In this section, we first define some useful notations. Then, we introduce an unbiased
estimator of pattern frequency.

For a length-l path pi = 〈vi
1, . . . , v

i
q , . . . , vi

l+1〉, we assign a unique index to each trans-

action sequence supported by pi , and denote by tsi
j the j -th transaction sequence supported

by pi . Apparently, Mi = ∏l+1
i=1 |Tvi

q
| is the number of all transaction sequences supported

by pi .
We further define a random variable Y i

j (h)

Y i
j (h) =

{
1 if the h-th sample draws tsi

j

0 otherwise
(4)

where 1 ≤ h ≤ |Sl | is the index of a sample and |Sl | is the volume of Sl . Since tsi
j is drawn

with probability 1
|Pl |Mi , we have E(Y i

j (h)) = 1
|Pl |Mi .

Now we present an unbiased pattern frequency estimator. Denote by Pl the set of all
length-l paths in graph G. For a pattern s = 〈X1 . . . , Xq, . . . , Xl+1〉, an estimator of the
real pattern frequency f (s) is

f̂ (s) =
∑|Pl |

i=1

∑Mi

j=1
∑|Sl |

h=1 Y i
j (h)Wi

j

|Sl ||Pl |
∑|Pl |

i=1 Mi
(5)

where Wi
j is defined as

Wi
j =

{
Mi s ⊆ tsi

j

0 otherwise
(6)

Note that, since P(s ⊆ tsi
j) = f (s), we have E(Wi

j) = f (s)Mi .

Now, we prove that f̂ (s) is an unbiased estimator of f (s).

Theorem 4 For a pattern s, f̂ (s) is an unbiased estimator of f (s).

Proof First, since Y i
j (h) and Wi

j are independent random variables, we have

E(Y i
j (h)Wi

j) = E(Y i
j (h))E(Wi

j) = f (s)

|Pl |

World Wide Web

Then, we have

E[f̂ (s)] =
∑|Pl |

i=1

∑Mi

j=1
∑|Sl |

h=1 E(Y i
j (h)Wi

j)

|Sl ||Pl |
∑|Pl |

i=1 Mi

=
∑|Pl |

i=1

∑Mi

j=1
|Sl ||Pl |f (s)

|Sl ||Pl |
∑|Pl |

i=1 Mi

= f (s)

The proof follows.

Using the estimator f̂ (s) (5) to calculate the top-k most frequent patterns is efficient. In
our problem, we only care about the order of the pattern frequencies. As we have shown
above, the denominator of f̂ (s), that is, |Sl ||Pl |

∑|Pl |
i=1 Mi , won’t affect the order of pattern

frequencies. Therefore, the patterns can be sorted by the nominator of f̂ (s), which is the
weighted sum of the count of transactions in Sl that contains pattern s. For example, for a
pattern s, if it is contained in ts1 and ts2, the weighted sum is equal to M1 + M2. We can
thus derive the weight of the transaction sequence tsi supported by pi as φ(tsi) = Mi .

The two-step sampling framework is summarized in Algorithm 4, which samples a
length-l transaction sequence set Sl from G in two steps. First, we uniformly sample m

length-l paths from G using Algorithm 2. Then, for each sampled path pi , we uniformly
sample one transaction sequence tsi by using Algorithm 3 and compute its weight φ(tsi).
At last, we output Sl , which consists of all the sampled transaction sequences and their
corresponding weights.

The time complexity of calculating degrees with Equation 1 is O(|E|), where |E|
denotes the number of edges. Algorithm 2 samples m length-l transaction sequences and
it needs O(ml) time. Algorithm 3 samples transaction sequences from sampled paths
and it also needs O(ml) time. Thus, the overall time complexity of Algorithm 4 is
O(|E| + 2ml).

World Wide Web

4.3 Bounding the sample size

In this section, we analyze the approximation error of f̂ (s) in Theorem 6 and derive an upper
bound of sample complexity for the proposed sampling-based algorithm in Theorem 7 and
Theorem 8.

Theorem 5 (Chernoff’s inequality [6]) Let Z1, . . . , Zn be independent random variables.
They need not have the same distribution. Assume that 0 ≤ Zi ≤ 1 always, for each i. Let
Z = Z1 + . . . + Zn. Write μ = E[Z] = E[Z1] + . . . + E[Zn]. Then for any ε ≥ 0,

P[|Z − μ| ≥ εμ] ≤ 2 exp(−ε2

3
μ)

Theorem 6 Given a set of length-l sampled transaction sequences Sl and an arbitrary
pattern s, for a fixed threshold ε ≥ 0, we have:

P(|f̂ (s) − f (s)| ≥ ε) ≤ 2 exp(−ε2a

3
|Sl |)

where a = 1
|Pl |M∗

∑|Pl |
i=1 Mi and M∗ = maxi Mi .

Proof We define a random variable Ui
j (h) = Y i

j (h)Wi
j . According to (4) and (6), we have

Ui
j (h) ∈ [0, Mi]. Thus,

Ui
j (h)

M∗ ∈ [0, 1].
Now, consider random variable

U =
|Pl |∑
i=1

Mi∑
j=1

|Sl |∑
h=1

Ui
j (h).

Applying Theorem 5, it follows

P

(
| U

M∗ − E(U)

M∗ | ≥ t
E(U)

M∗) ≤ 2 exp(− t2

3

E(U)

M∗

)

Since E(U) = f (s)
|Sl ||Pl |

∑|Pl |
i=1 Mi and U

|Sl ||Pl |
∑|Pl |

i=1 Mi
= f̂ (s) (see (5)), it follows

P(|f̂ (s) − f (s)| ≥ tf (s)) ≤ 2 exp

⎛
⎝− t2f (s)

3

|Sl |
|Pl |M∗

|Pl |∑
i=1

Mi

⎞
⎠

Since f (s) ∈ [0, 1], it follows

P(|f̂ (s) − f (s)| ≥ tf (s)) ≤ 2 exp

⎛
⎝− t2f 2(s)

3

|Sl |
|Pl |M∗

|Pl |∑
i=1

Mi

⎞
⎠

Let ε = tf (s) and a = 1
|Pl |M∗

∑|Pl |
i=1 Mi . It follows

P(|f̂ (s) − f (s)| ≥ ε) ≤ 2 exp

(
−ε2a

3
|Sl |

)

The proof follows.

World Wide Web

In Theorem 7, we further derive an upper bound of sample complexity for the proposed
sampling-based algorithm to make sure for each pattern s, |f̂ (s) − f (s)| ≤ ε holds with a
high probability.

Theorem 7 Denote by Ql the set of all length-l patterns in G. If |Sl | ≥ 12
ε2a

ln
2|Ql |

δ
, then

P(∀s ∈ Ql, |f̂ (s) − f (s)| < ε
2) ≥ 1 − δ.

Proof Since Ql is the set of all length-l patterns in G, by Theorem 6 and the Union Bound
[3], it follows

P(∃s ∈ Ql, |f̂ (s) − f (s)| ≥ ε

2
) ≤ 2|Ql | exp

(
−ε2a

12
|Sl |

)

Thus, we have

P(∀s ∈ Ql, |f̂ (s) − f (s)| <
ε

2
) ≥ 1 − 2|Ql | exp

(
−ε2a

12
|Sl |

)

Since |Sl | ≥ 12
ε2a

ln
2|Ql |

δ
, it follows that

1 − 2|Ql | exp

(
−ε2a

12
|Sl |

)
≥ 1 − δ

Thus, we have

P

(
∀s ∈ Ql, |f̂ (s) − f (s)| <

ε

2

)
≥ 1 − δ

The proof follows.

The bound of 12
ε2a

ln
2|Ql |

δ
in Theorem 7 is an upper bound of sample complexity for the

proposed sampling-based algorithm, since the Union Bound [3] is applied to bound the
approximation errors of pattern frequencies of all patterns in Ql . As demonstrated later in
the experiments, in practice we can achieve a good estimation quality with a sample size
that is smaller than the bound in Theorem 7. Next, we analyze the relationship between |Sl |
and path length l in Theorem 8.

Theorem 8 Denote by I the set of all items in G, and by Ql the set of all length-l patterns
in G. If |Sl | ≥ 12|I |(l+1)+12

ε2a
ln 2

δ
, then P(∀s ∈ Ql, |f̂ (s) − f (s)| < ε

2) ≥ 1 − δ.

Proof Since Ql is the set of all patterns in G, we have

|Ql | ≤ 2|I |(l+1)

By substituting the above inequality into the condition |Sl | ≥ 12
ε2a

ln
2|Ql |

δ
of Theorem 7,

the theorem follows.

According to Theorem 8, when |Sl | ≥ 12|I |(l+1)+12
ε2a

ln 2
δ
, the estimated pattern frequency

f̂ (s) for each pattern s will have a high probability to be close to its real frequency f (s).
Therefore, we can use a sequential pattern mining method, such as PrefixSpan [17], to
extract sequential patterns from the set of sampled transaction sequences. The ranking on
the estimated pattern frequencies will be a good approximation of the ranking of real pattern
frequencies. As a result, we can obtain the high-quality approximation of top-k sequen-
tial patterns using the pattern frequencies estimated from the set of sampled transaction
sequences.

World Wide Web

Comparing to the baseline method that enumerates the exponential number of transac-
tion sequences in Dl , the proposed sampling method significantly reduces the number of
required transaction sequences and achieves guaranteed approximation quality.

5 Experiments

In this section, we analyze the effectiveness and efficiency of the proposed algorithms on
synthetic and real-world networks.

5.1 Evaluation datasets

The following datasets are used.

– SYN is a synthetic dataset. We build two synthetic datasets, denoted by SYN1 and
SYN2, which are generated by the IBM Quest Synthetic Data Generator.1 Both SYN1
and SYN2 consist of the same graph structure with 28 edges and 24 vertices. The dif-
ference between SYN1 and SYN2 lies in the distribution of transaction databases. In
SYN1, each vertex has 20 transactions. In SYN2, each vertex with degree d has 8(d+1)

transactions in the associated transaction database.
– Flight is a flight routing network published in OpenFlights website.2 We build our

graph by treating each airport as a vertex and each airline as a directed edge. Each
transaction on the vertex is an entry of routes, where each route contains the information
of source airport, destination airport, codeshare, stops, equipment, and so on. The top-k
sequential patterns in the dataset show interesting flight services following the airlines.

– CN is a collaboration network built from Aminer dataset [27]. We build our graph
datasets by treating each paper as a vertex and each citation as a directed edge. Each
transaction database of a vertex is a set of topics, where each topic is represented by a set
of keywords extracted from the abstracts of the paper. The top-k sequential patterns in
these datasets reveal interesting patterns of topic changes in paper citations and relations
among research topics. We build two citation network datasets, denoted by CN1 and
CN2, that have different sizes.

The statistics of the datasets are listed in Table 2, where “#Vertices” represents the num-
ber of vertices, “#Edges” represents the number of edges, “#Trans” represents the number of
unique transactions in G, “Average #items/trans” represents the average number of items in
a transaction, “#S for l = 1” and “#S for l = 2” represent the number of all the transaction
sequences for l = 1, 2.

5.2 Comparisonmethods and evaluationmetrics

The following comparison methods are used.

– TSPMG is a full implementation of the proposed approach, which uses Algorithm 4
to sample weighted transaction sequences and then applies PrefixSpan [17] to extract
frequent sequential patterns with the set of sampled transaction sequences.

1http://www.almaden.ibm.com/cs/quest/syndata.html
2https://openflights.org/data.html

http://www.almaden.ibm.com/cs/quest/syndata.html
https://openflights.org/data.html

World Wide Web

Table 2 The statistics of the datasets. The symbol “-” indicates that we cannot obtain the statistics owing to
the limited capacity of our main memory

Datasets #Vertices #Edges #Transactions Average #items/trans #S for l = 1 #S for l = 2

SYN1 24 28 480 5.00 11,200 184,000

SYN2 24 28 420 5.00 8,828 141,312

Flight 28 488 2,524 4.00 44,013 2,369,477

CN1 16,198 60,856 120,741 6.73 − −
CN2 324,228 1,809,469 3,340,335 6.59 − −

– TSPMG-P differs from TSPMG in that it adopts random walks [15] instead of Algo-
rithm 2 to sample paths. The random walk first selects a vertex from the graph
randomly, and then randomly selects a neighbor of the previous selected vertex. This
process iterates until the path length reaches l.

– TSPMG-S differs from TSPMG in that the weight of each sampled transaction
sequence is 1.

– TSPMG-B is a baseline introduced in Algorithm 1, which also uses PrefixSpan [17] to
extract frequent sequential patterns in the mining stage.

To evaluation these methods, we use the following evaluation metrics. We denote G as
the ground truth ranked list of the real top-k patterns and by L the ranked list of patterns
produced by the proposed sampling-based method. Let G(k) and L(k) be the ranked lists of
the top-k patterns in G and L, respectively.

– Mean Estimation Error (ME) is the average error between real pattern frequency f (s)

and estimated pattern frequency f̂ (s) in (5). Denote si as the i-th pattern in ranked list
G(k), the ME at rank-k is computed as

ME(k) =
∑k

i=1 |f (si) − f̂ (si)|
k

(7)

– Average Precision (AP) [25] is widely used to evaluate the similarity between two
ranked lists in the field of information retrieval. Denote by R(i) an indicator function
that equals to 1 if the pattern at rank i in L is contained in G, the average precision of
L when using G(k) as the ground truth is

AP(k) =
∑|L|

i=1
|L(i)∩G(k)|

|L(i)| R(i)

|G(k)| (8)

– Ranking Similarity (RS) [14] quantifies the degree of similarity between two ranked
lists at rank k. The ranking similarity of G and L at rank k is

RS(k) = |G(k) ∩ L(k)|
k

(9)

– Time Cost (TC, in milliseconds) and Space Cost (SC, in megabytes) are used to
measure the running time and main memory usage respectively. Specifically, we use
STC and MTC (resp. SSC and MSC) to represent the sampling time and mining time
(resp. sampling memory usage and mining memory usage) respectively. Since the sizes
of SYN1, SYN2 and Flight are small, we omit the results of the memory usage on them.

World Wide Web

5.3 Implementation details

All algorithms were implemented in Java and compiled with JRE 9. All experiments were
performed on a Windows 10 system with 64GB main memory and 4.00 GHz CPU. We
set l = 1, 2 and k = 50, 100, 200, 300 respectively. The sample sizes are set as follows.
Denote Sl as the set of the sampled transaction sequences for path length l and |Sl | as the
volume. For SYN1 and SYN2, |S1| = 2 × 103, 4 × 103, 6 × 103, 8 × 103 and |S2| =
2×104, 4×104, 6×104, 8×104. For Flight, |S1| = 1×104, 2×104, 3×104, 4×104 and
|S2| = 2 × 105, 4 × 105, 6 × 105, 8 × 105. For CN1 and CN2, |S2| = |S3| = 2 × 105, 4 ×
105, 6 × 105, 8 × 105.

5.4 The results on synthetic datasets

In this subsection, we introduce the experimental results on the synthetic datasets. Since
SYN1 and SYN2 are small, we are able to run TSPMG-B to obtain the exact pattern frequen-
cies of all patterns and the exact ranked lists of the top-k sequential patterns, respectively.
The exact pattern frequencies are used to calculate the ME of the proposed sampling-based

Figure 4 The AP and RS on the SYN1 dataset for l = 1 and l = 2

World Wide Web

method. The exact ranked lists of patterns are used as the ground truth to evaluate the
performance of the sampling-based method in AP and RS.

5.4.1 The effectiveness on the synthetic datasets

Figures 4a-p and 5a-p show AP and RS of TSPMG, TSPMG-B, TSPMG-P and TSPMG-S
on SYN1 and SYN2 for different path lengths and values of k. AP and RS of TSPMG-B are
1.0 as TSPMG-B produces the exact results, while the other methods work with sampling
methods and thus their values of AP and RS are lower than 1.0.

For SYN1, when l = 1, TSPMG, TSPMG-P and TSPMG-S have similar AP and RS.
The reason is that, in the first step of our two-step sampling method, the path sampling of
TSPMG, TSPMG-P and TSPMG-S when l = 1 is to sample edges uniformly. And in the
second step, since each vertex of the graph has the same number of transactions, the sampled
transaction sequences have the same weights. Thus, TSPMG, TSPMG-P and TSPMG-S can
achieve similar performances. Similarly, when l = 2, TSPMG and TSPMG-S have similar
AP and RS but TSPMG-P has lower AP and RS than TSPMG and TSPMG-S. The reason
is that, TSPMG-P uses random walks rather than uniform sampling as the path sampling

Figure 5 The AP and RS on the SYN2 dataset for l = 1 and l = 2

World Wide Web

Table 3 ME of pattern frequency in dataset SYN1

l = 1 |S1| 2,000 4,000 6,000 8,000

ME 2.56 × 10−3 6.57 × 10−4 6.15 × 10−4 5.79 × 10−4

l = 2 |S2| 20,000 40,000 60,000 80,000

ME 1.79 × 10−4 1.53 × 10−4 1.46 × 10−4 1.06 × 10−4

method. For SYN2, when l = 1, 2, TSPMG has higher AP and RS than both TSPMG-P
and TSPMG-S, as different vertices in SYN2 have different number of transactions. This
verifies the effectiveness of Algorithm 4.

In summary, when l = 1 and each vertex has the same number of transactions, TSPMG,
TSPMG-P and TSPMG-S can achieve similar performances for mining top-k sequential
patterns in transaction database graphs. For other path lengths, when each vertex has the
same number of transactions, TSPMG and TSPMG-S can achieve similar performances.
In addition, in other cases, only TSPMG can achieve a good approximation. We thus can
conclude that, TSPMG is robust and can accurately approximate the ranked list of patterns
with varying path lengths and varying number of transactions on each vertex.

Tables 3 and 4 show the ME at rank-50 of the sampling-based method in SYN1 and
SYN2, respectively. For both l = 1 and l = 2, the ME of the sampling-based method
monotonically decreases when the sample size |Sl | increases. This is because, according to
Theorems 6 and 7, a larger sample size leads to a smaller estimation error of the pattern
frequencies.

As shown in Table 3, the sampling method achieves an estimation error of 2.56 × 10−3

with a sample size |Sl | = 2, 000, which is much smaller than the bound of |Sl | given in
Theorem 7. The difference between the bound of |Sl | and the practical sample size is not
really surprising, because the bound in Theorem 7 is an upper bound of sample complexity
for the proposed sampling-based algorithm.

5.4.2 The efficiency on the synthetic datasets

Figure 6 shows the total time cost with different values of k on the SYN1 and SYN2 datasets
for l = 1 and l = 2. As TSPMG has achieved much better AP and RS than TSPMG-P and
TSPMG-S, we only report the time cost of TSPMG. For the same value of k, since a larger
sample size leads to a larger time cost in transaction sequence sampling and sequential
pattern mining, the time cost of TSPMG increases when the sample size increases. For
different values of k, the time cost of TSPMG increases when k increases, since a larger k

leads to a larger time cost in mining stage. We can also observe that TSPMG can achieve a
speedup against the baseline TSPMG-B, especially when the sample size is small.

In summary, on the synthetic datasets TSPMG significantly reduces the number of
required transaction sequences and achieves good approximation quality.

Table 4 ME of pattern frequency in dataset SYN2

l = 1 |S1| 2,000 4,000 6,000 8,000

ME 2.89 × 10−3 2.37 × 10−3 2.27 × 10−3 1.33 × 10−3

l = 2 |S2| 20,000 40,000 60,000 80,000

ME 2.07 × 10−4 1.87 × 10−4 1.66 × 10−4 1.43 × 10−4

World Wide Web

10
3

50 100 200 300

k

0

1

2

3

4

R
u
n
n
in

g
 T

im
e

TSPMG-B

TSPMG (|S|=2000)

TSPMG (|S|=4000)

TSPMG (|S|=6000)

TSPMG (|S|=8000)

10
4

50 100 200 300

k

0

1

2

3

4

R
u
n
n
in

g
 T

im
e

TSPMG-B

TSPMG (|S|=20,000)

TSPMG (|S|=40,000)

TSPMG (|S|=60,000)

TSPMG (|S|=80,000)

10
3

50 100 200 300

k

0

1

2

3

4

R
u
n
n
in

g
 T

im
e

TSPMG-B

TSPMG (|S|=2000)

TSPMG (|S|=4000)

TSPMG (|S|=6000)

TSPMG (|S|=8000)

10
4

50 100 200 300

k

0

1

2

3

4

R
u
n
n
in

g
 T

im
e

TSPMG-B

TSPMG (|S|=20,000)

TSPMG (|S|=40,000)

TSPMG (|S|=60,000)

TSPMG (|S|=80,000)

Figure 6 The TTC, which is the sum of STC and MTC, with different values of k on the SYN1 and SYN2
datasets for l = 1 and l = 2. |S| denotes the sample size

5.5 Results on real-world datasets

In this section, we introduce the experimental results on the real-world datasets. We
focus on analyzing how AP, RS, time cost and space cost of TSPMG-B and TSPMG
change when the sample size |Sl | and the values of k increase. Since TSPMG-B is com-
putationally expensive, we use the small real-world dataset Flight when l = 1, 2 to
demonstrate the performances of TSPMG-B and TSPMG, and test the scalability of our
method on Flight, CN1 and CN2. To test the stability of TSPMG, for CN1 and CN2,
we use the ranked list generated by TSPMG using a large sample size |Sl | = 10 × 105

as the pseudo ground truth to evaluate AP and RS of TSPMG using different sample
sizes.

5.5.1 The effectiveness on real-world datasets

Figure 7a-p show AP and RS of TSPMG, TSPMG-B, TSPMG-P and TSPMG-S on Flight.
For different path lengths and values of k, TSPMG has higher AP and RS than both TSPMG-
P and TSPMG-S. This shows that, TSPMG can achieve a more accurate approximated
ranked list of top-k sequential patterns than TSPMG-P and TSPMG-S.

Figure 8a-h show AP and RS of TSPMG on CN1 and CN2. For both l = 1 and l = 2,
when the sample size increases, AP and RS approach 1 quickly. This demonstrates that the
estimated ranked list of patterns becomes more accurate when the sample size increases.
Please note that, when k increases, AP and RS may not increase. The reason is that, the
patterns that locate at the tail of the ranked list commonly have similar frequencies and the
differences between the frequencies of these patterns may be small. According to Theo-
rem 8, given a specific sample size, the error bound ε may be larger than the differences.
This may result in a problem that some patterns are incorrectly put into the top-k ranked
list, making AP and RS decrease.

We can also see that, for l = 1 and l = 2, when the sample size increases, AP and
RS of TSPMG converge faster on CN1 than that on CN2. The reason is that, when the
size of the dataset increases, the newly added paths may not support a specific pattern s.
Thus, although the total number of transaction sequences in the graph increases, the number
of sequences containing s may not increase. This makes the frequency of s decrease and
the average frequency of top-k patterns in CN2 is smaller than that in CN1. Consequently,
according to Theorem 8, to achieve the same quality of results, the error bound ε for CN2
should be smaller than that for CN1. We thus need a larger sample size in CN2 than that
in CN1.

World Wide Web

Figure 7 The AP and RS on the Flight dataset for l = 1 and l = 2

0 2 4 6 8

Sample Size 10
5

0

0.5

1

1.5

2

A
v
e

r
a

g
e

 P
r
e

c
is

io
n TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

0.5

1

1.5

2

A
v
e

r
a

g
e

 P
r
e

c
is

io
n TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

0.5

1

1.5

2

A
v
e

r
a

g
e

 P
r
e

c
is

io
n TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

0.5

1

1.5

2

A
v
e

r
a

g
e

 P
r
e

c
is

io
n TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

0.5

1

1.5

2

R
a

n
k
in

g
 S

im
il
a

r
it
y TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

0.5

1

1.5

2

R
a

n
k
in

g
 S

im
il
a

r
it
y TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

0.5

1

1.5

2

R
a

n
k
in

g
 S

im
il
a

r
it
y TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

0.5

1

1.5

2

R
a

n
k
in

g
 S

im
il
a

r
it
y TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

Figure 8 The AP and RS on the CN1 and CN2 datasets for l = 1 and l = 2

World Wide Web

5.5.2 The efficiency on real-world datasets

Figure 9a-l show the time cost of sampling and mining process on Flight, CN1 and CN2
for l = 1 and l = 2 respectively. As TSPMG has achieved much better AP and RS than
TSPMG-P and TSPMG-S, we only report the time cost of TSPMG. For both l = 1 and
l = 2, the sampling time increases almost linearly when the sample size increases. This
demonstrates the superior scalability of the proposed sampling-based method. Note that,
given the same path length and sample size, the time cost is almost the same for differ-
ent values of k. This shows that, the sampling time is independent of the values of k. As
shown in Figure 9a and c, the sampling time may be larger than the time of enumerating all
transaction sequences (i.e., TSPMG-B). This is because, the time complexity of transaction
sequence enumeration is O(|V |(l+1)C(l+1)), while that of sampling is O(2|Sl |l). Thus, due
to the small size of Flight, the values of |V | and C are also small but |Sl | is relatively large,
making the sampling-based method cost more time than transaction sequence enumeration.

As shown in Figure 9, the mining time increases when the sample size increases. Note
that, the mining time of TSPMG-B is larger than TSPMG, as TSPMG-B uses all the trans-
action sequences in the graph, which is always larger than the sample size. This shows that,
the mining time is positively correlated to the number of transaction sequences. The mining
time also increases when the value of k increases. The reason is that, when k increases, it
needs more time to prune unqualified patterns and reserve the top-k ones. When l increases,
the sampling time and the mining time increase. We now give an example to illustrate that,
given a small input k, how many times Algorithm 4 can achieve a speedup. As shown in
Figure 9d, h and l, given l = 2 and |S2| = 8 × 105, the mining time on Flight, CN1 and

0 1 2 3 4

Sample Size 10
4

0

5

10

R
u
n
n
in

g
 T

im
e

10
2

TSPMG-B

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

10
4

50 100 200 300

k

0

1

2

3

R
u
n
n
in

g
 T

im
e

TSPMG-B

TSPMG (|S|=10,000)

TSPMG (|S|=20,000)

TSPMG (|S|=30,000)

TSPMG (|S|=40,000)

0 2 4 6 8

Sample Size 10
5

0

2

4

6

8

R
u
n
n
in

g
 T

im
e

10
3

TSPMG-B

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

10
5

50 100 200 300

k

0

2

4

6

8

R
u
n
n
in

g
 T

im
e

TSPMG-B

TSPMG (|S|=200,000)

TSPMG (|S|=400,000)

TSPMG (|S|=600,000)

TSPMG (|S|=800,000)

0 2 4 6 8

Sample Size 10
5

0

0.5

1

1.5

2

R
u
n
n
in

g
 T

im
e

10
3

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

5

10

R
u
n
n
in

g
 T

im
e

10
4

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

1

2

3

R
u
n
n
in

g
 T

im
e

10
3

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

0.5

1

R
u
n
n
in

g
 T

im
e

10
6

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
4

0

1

2

3

4

R
u
n
n
in

g
 T

im
e

10
3

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

5

10

R
u
n
n
in

g
 T

im
e

10
5

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

5

10

R
u
n
n
in

g
 T

im
e

10
3

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

0.5

1

1.5

R
u
n
n
in

g
 T

im
e

10
6

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

Figure 9 The STC and MTC on CN1 and CN2 datasets for l = 1 and l = 2. Note that we omit the results of
TSPMG-B on CN1 and CN2 as it cannot accomplish the task within a feasible time limit

World Wide Web

0 2 4 6 8

Sample Size 10
4

0

2

4

M
e

m
o

r
y
 U

s
a

g
e

10
2

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

2

4

6

M
e

m
o

r
y
 U

s
a

g
e

10
3

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

2

4

6

M
e

m
o

r
y
 U

s
a

g
e

10
2

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

k 10
5

0

2

4

6

M
e

m
o

r
y
 U

s
a

g
e

10
3

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

1

2

3

M
e

m
o

r
y
 U

s
a

g
e

10
3

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

5

10

M
e

m
o

r
y
 U

s
a

g
e

10
3

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

1

2

3

M
e

m
o

r
y
 U

s
a

g
e

10
3

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

0 2 4 6 8

Sample Size 10
5

0

5

10

M
e

m
o

r
y
 U

s
a

g
e

10
3

TSPMG (k=50)

TSPMG (k=100)

TSPMG (k=200)

TSPMG (k=300)

Figure 10 The SSC and MSC on the CN1 and CN2 datasets for l = 1 and l = 2

CN2 when k = 50 is 4.82, 9.11 and 7.32 times faster than that when k = 300. Moreover,
on Flight, when k = 50 and |S2| = 8 × 105, the mining time of TSPMG is 11.1 times faster
that of TSPMG-B.

0.2 0.4 0.6 0.8 1.0

Percent of #Vertices

0

1

2

3

4

R
u
n
n
in

g
 T

im
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Vertices

0

2

4

6

R
u
n
n
in

g
 T

im
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Vertices

0

2

4

6

8

R
u
n
n
in

g
 T

im
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Vertices

0

5

10

15

20

R
u
n
n
in

g
 T

im
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Edges

0

1

2

3

4

R
u
n
n
in

g
 T

im
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Edges

0

2

4

6

R
u
n
n
in

g
 T

im
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Edges

0

2

4

6

8

R
u
n
n
in

g
 T

im
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Edges

0

5

10

15

20

R
u
n
n
in

g
 T

im
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Transactions

0

1

2

3

4

R
u
n
n
in

g
 T

im
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Transactions

0

2

4

6

R
u
n
n
in

g
 T

im
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Transactions

0

2

4

6

8

R
u
n
n
in

g
 T

im
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Transactions

0

5

10

15

20

R
u
n
n
in

g
 T

im
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

Figure 11 The STC with different percents of total numbers of vertices, edges and transactions of each vertex
on the CN1 and CN2 datasets for l = 1 and l = 2, where #Vertices, #Edges, #Transactions denote the total
number of vertices, edges and transactions of each vertex respectively. |S| denotes the sample size

World Wide Web

Figure 10a-h show the space cost of sampling and mining process on CN1 and CN2
for l = 1 and l = 2 respectively. As TSPMG has achieved much better AP and RS than
TSPMG-P and TSPMG-S, we only report the space cost of TSPMG. For both l = 1 and
l = 2, the space cost of the sampling process increases almost linearly when the sample
size increases. The reason is that, TSPMG needs larger main memory to store the sampled
transaction sequences. We also observe that, given the same path length, for different values
of k, the space cost is almost the same as the sampling process is independent of the values
of k. The space cost of mining process increases when the sample size increases, and it
also increases when the value of k increases. This is because, when k increases, it needs
more space to store the candidate patterns. When l increases, the space cost increases as the
lengths of transaction sequences increases.

Figure 11 shows the time cost of the sampling process (i.e., Algorithm 4) with different
numbers of vertices, edges and transactions of each vertex on the CN1 and CN2 datasets
when l = 1 and l = 2. Given the same percent of vertices (similarly, edges or transactions),
the time cost increases when the sample size increases. This is because a larger sample size
leads to longer time to obtain and store the sampled transaction sequences. Given the same
sample size, when the number of vertices or edges increases, the time cost increases as it
needs more time to compute the probability according to (2). However, the time cost with
different numbers of transactions on each vertex is almost the same. The reason is that,
according to the time complexity analysis of Algorithm 4, |E|, m and l are independent of
the number of transactions of each vertex.

Figure 12 shows the space cost of the sampling process (i.e., Algorithm 4) with different
numbers of vertices, edges and transactions of each vertex on the CN1 and CN2 datasets

0.2 0.4 0.6 0.8 1.0

Percent of #Vertices

0

5

10

M
e

m
o

r
y
 U

s
a

g
e

10
2

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Vertices

0

5

10

15

20

M
e

m
o

r
y
 U

s
a

g
e

10
2

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Vertices

0

1

2

3

4

M
e

m
o

r
y
 U

s
a

g
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Vertices

0

1

2

3

4

5

M
e

m
o

r
y
 U

s
a

g
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Edges

0

5

10

M
e

m
o

r
y
 U

s
a

g
e

10
2

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Edges

0

5

10

15

20

M
e

m
o

r
y
 U

s
a

g
e

10
2

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Edges

0

1

2

3

4

5

M
e

m
o

r
y
 U

s
a

g
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Edges

0

2

4

M
e

m
o

r
y
 U

s
a

g
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Transactions

0

5

10

M
e

m
o

r
y
 U

s
a

g
e

10
2

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Transactions

0

5

10

15

20

M
e

m
o

r
y
 U

s
a

g
e

10
2

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Transactions

0

1

2

3

4

M
e

m
o

r
y
 U

s
a

g
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

0.2 0.4 0.6 0.8 1.0

Percent of #Trans

0

1

2

3

4

5

M
e

m
o

r
y
 U

s
a

g
e

10
3

TSPMG (|S|=2 10
5
)

TSPMG (|S|=4 10
5
)

TSPMG (|S|=6 10
5
)

TSPMG (|S|=8 10
5
)

Figure 12 The SSC with different percents of total numbers of vertices, edges and transactions of each vertex
on the CN1 and CN2 datasets for l = 1 and l = 2, where #Vertices, #Edges, #Transactions denote the total
number of vertices, edges and transactions on each vertex respectively. |S| denotes the sample size

World Wide Web

for l = 1 and l = 2. Given the same percent of vertices (similarly, edges or transactions),
the space cost increases when the sample size increases, as a larger sample size leads to
larger space cost to obtain and store the sampled transaction sequences. However, given
the same sample size, when the number of vertices, edges and transactions of each vertex
increases, the space cost may not increase. This is because, the space complexity is related
to the sample size m, the path length l and the average number of items for each transaction
|X|ave. As the sample size and the path length are the same, the space cost mainly depends
on |X|ave. However, each sampling process may obtain different values of |X|ave, and larger
|X|ave leads to more space cost.

In summary, TSPMG can obtain accurate top-k sequential patterns when the sample
size is not too small, and is much more scalable than the exact method in mining frequent
sequential patterns from large graphs.

5.6 A case study

In this section, we report a case study on the CN1 dataset. Mining frequent sequential
patterns in CN1 finds interesting patterns of topic relations in paper citations.

Tables 5 and 6 show some interesting patterns obtained by the sampling-based method
with l = 1 and l = 2, respectively. Those frequent patterns show significant trends of
cross-field citations, which reveal active interdisciplinary research hotspots among different
research fields. The activeness of those research hotspots is also confirmed by the number
of related publications (#RP) obtained by searching Google Scholar (scholar.google.com)
using the keywords in the mined sequential patterns. Specifically, the patterns in Tables 5
and 6 are sorted by the estimated pattern frequencies obtained by our sampling-based
method. At the same time, the ranked lists are highly consistent with descending order in
#RP value. This consistency demonstrates that the results produced by the sampling-based
method matches the real world patterns, and verifies the effectiveness of mining sequential
patterns in transaction database graphs.

We also look into the specific patterns and find they are meaningful. Take 〈(deep learn-
ing), (reinforcement learning)〉 as an example. By extracting from Google Scholar all paper
citations related to this pattern, we find that many deep learning papers cite reinforcement
learning papers in recent years. As we know, deep reinforcement learning has been one of
the hottest research trends in the field of deep learning.

Table 5 Some interesting patterns in CN1 (l = 1)

Sequential Patterns #RP

〈(machine learning), (social network)〉 21,200

〈(social network), (random walk)〉 12,900

〈(deep learning), (clustering)〉 12,600

〈(graph embedding), (classification)〉 5,390

〈(social network), (anomaly detection)〉 4,920

〈(deep learning), (reinforcement learning)〉 3,870

〈(graph partitioning), (community detection)〉 3,500

〈(dynamic network), (game theory)〉 3,340

〈(deep learning), (anomaly detection)〉 1,430

〈(network evolution), (game theory)〉 1,170

World Wide Web

Table 6 Some interesting patterns in CN1 (l = 2)

Sequential Patterns #RP

〈(data mining), (machine learning), (information retrieval)〉 37,700

〈(machine learning), (social network), (approximation algorithm)〉 10,900

〈(data mining), (machine learning, social network), (web search)〉 7,450

〈(deep learning), (clustering), (prediction)〉 7,430

〈(dynamic network), (game theory), (clustering)〉 4,410

〈(social network), (random walk), (recommendation)〉 4,180

〈(social network), (anomaly detection), (classification)〉 3,240

〈(graph embedding), (classification), (clustering)〉 2,980

〈(deep learning), (reinforcement learning), (classification)〉 2,660

〈(social network), (anomaly detection), (pattern mining)〉 518

The relationship between machine learning and social network, captured by some pat-
terns found, is also interesting. In Table 5, the top pattern 〈(machine learning), (social
network)〉 reveals the hot research trend of applying machine learning algorithms to solve
social network problems. However, it is an open problem that classic machine learning algo-
rithms are not scalable enough to handle large scale social networks, thus many researchers
use approximation techniques to improve the scalability of machine learning algorithms on
social networks. This trend is captured by pattern 〈(machine learning), (social network),
(approximation algorithm)〉 in Table 6.

6 Conclusion

In this paper, we tackled the novel problem of finding top-k sequential patterns in transac-
tion database graphs. We designed a fast sampling-based top-k sequential pattern mining
algorithm. Our experiments on both synthetic data sets and real data sets showed the supe-
rior effectiveness and efficiency of the proposed sampling method in finding meaningful
sequential patterns. As future work, we will further improve the scalability and extend the
sampling method to handle dynamic graphs.

Acknowledgements This work was supported in part by the National Key Research and Development
Program of China (No. 2017YFB0803301), the Natural Science Foundation of China (No. U1836215),
DongGuan Innovative Research Team Program (No.201636000100038), and the 111 Project (No. B18008).

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the 11th International Confer-
ence on Data Engineering, ICDE’95, pp. 3–14 (1995)

2. Bartlett, P.L., Boucheron, S., Lugosi, G.: Model selection and error estimation. Mach. Learn. 48(1-3),
85–113 (2002)

3. Bonferroni, C.E.: Teoria statistica delle classi e calcolo delle probabilita. Libreria internazionale Seeber
(1936)

4. Calders, T., Garboni, C., Goethals, B.: Efficient pattern mining of uncertain data with sampling. In: Pro-
ceedings of the 14th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining,
PAKDD’10, pp. 480–487 (2010)

World Wide Web

5. Cherkassky, V.: The nature of statistical learning theory. IEEE Trans. Neural Netw. 8(6), 1564 (1997)
6. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of

observations. Ann. Math. Stat. 23(4), 493–507 (1952)
7. Cochran, W.G. Sampling techniques, 3rd. Wiley, New York (1977)
8. Dong, G., Pei, J.: Sequence data mining. Springer, Berlin (2007)
9. Dutta, S., Nayek, P., Bhattacharya, A.: Neighbor-aware search for approximate labeled graph matching

using the chi-square statistics. In: Proceedings of the 26th International Conference on World Wide Web,
WWW’17, pp. 1281–1290 (2017)

10. Fournier-Viger, P., Gomariz, A., Gueniche, T., Mwamikazi, E.T.: Tks: efficient mining of top-k sequen-
tial patterns. In: Proceedings of the 9th International Conference on Advanced Data Mining and
Applications, ADMA’13, pp. 109–120 (2013)

11. Ge, J., Xia, Y.: Distributed sequential pattern mining in large scale uncertain databases. In: Proceed-
ings of the 20th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining,
PAKDD’16, pp. 17–29 (2016)

12. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.: Freespan: Frequent pattern-projected
sequential pattern mining. In: Proceedings of the 6th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD’00, pp. 355–359 (2000)

13. Huang, D., Xu, K., Pei, J.: Malicious url detection by dynamically mining patterns without pre-defined
elements. World Wide Web Journal 17(6), 1375–1394 (2014)

14. Kimura, M., Saito, K.: Tractable models for information diffusion in social networks. In: Proceedings
of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases,
PKDD’06, pp. 259–271 (2006)

15. Leskovec, J., Faloutsos, C.: Neighbor-aware search for approximate labeled graph matching using the
chi-square statistics. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD’06, pp. 631–636 (2006)

16. Liu, C., Zhang, K., Xiong, H., Jiang, G., Yang, Q.: Temporal skeletonization on sequential data: Patterns,
categorization, and visualization. In: Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD’14, pp. 1336–1345 (2014)

17. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Prefixspan: mining sequen-
tial patterns by prefix-projected growth. In: Proceedings of the 17th International Conference on Data
Engineering, ICDE’01, pp. 215–224 (2001)

18. Pfeiffer, J.J., Moreno, S., Fond, T.L., Neville, J., Gallagher, B.: Attributed graph models: modeling net-
work structure with correlated attributes. In: Proceedings of the 23rd International Conference on World
Wide Web, WWW’14, pp. 831–842 (2014)

19. Pietracaprina, A., Riondato, M., Upfal, E., Vandin, F.: Mining top-k frequent itemsets through progres-
sive sampling. Data Min. Knowl. Disc. 21(2), 310–326 (2010)

20. Raı̈ssi, C., Poncelet, P.: Sampling for sequential pattern mining: From static databases to data streams.
In: Proceedings of the 7th IEEE International Conference on Data Mining, ICDM’07, pp. 631–636
(2007)

21. Ribeiro, B.F., Wang, P., Murai, F., Towsley, D.: Sampling directed graphs with random walks. In:
Proceedings of the IEEE International Conference on Computer Communications, INFOCOM’12,
pp. 1692–1700 (2012)

22. Riondato, M., Upfal, E.: Efficient discovery of association rules and frequent itemsets through sampling
with tight performance guarantees. In: Proceedings of the European Conference on Machine Learning
and Knowledge Discovery in Databases, ECML PKDD’12, pp. 25–41 (2012)

23. Riondato, M., Upfal, E.: Mining frequent itemsets through progressive sampling with rademacher aver-
ages. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD’15, pp. 1005–1014 (2015)

24. Shang, J., Peng, J., Han, J.: Macfp: maximal approximate consecutive frequent pattern mining under
edit distance. In: Proceedings of the 2016 SIAM International Conference on Data Mining, SDM’16,
pp. 558–566 (2016)

25. Singhal, A.: Modern information retrieval: a brief overview. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering 24(4), 35–43 (2001)

26. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and performance improvements. In:
Proceedings of the 5th International Conference on Extending Database Technology, EDBT’96, pp. 3–17
(1996)

27. Tang, J., Zhang, J., Yao, L., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social
networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD’08, pp. 990–998 (2008)

28. Thompson, S.K. Sampling, 3rd. Wiley, New York (2012)

World Wide Web

29. Toivonen, H.: Sampling large databases for association rules. Proceedings of the Vldb Endowment 96,
134–145 (1996)

30. Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T.: Fast best-effort pattern matching in large
attributed graphs. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD’07, pp. 737–746 (2007)

31. Tzvetkov, P., Yan, X., Han, J.: Tsp: mining top-k closed sequential patterns. Knowl. Inf. Syst. 7(4),
438–457 (2005)

32. Wang, X., Lin, J., Senin, P., Oates, T., Gandhi, S., Boedihardjo, A.P., Chen, C., Frankenstein, S.:
Rpm: representative pattern mining for efficient time series classification. In: Proceedings of the 19th
International Conference on Extending Database Technology, EDBT’16, pp. 185–196 (2016)

33. Ye, W., Zhou, L., Mautz, D., Plant, C., Böhm, C.: Learning from labeled and unlabeled vertices in
networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD’17, pp. 1265–1274 (2017)

34. Zaki, M.J.: Spade: an efficient algorithm for mining frequent sequences. Mach. Learn. 42(1/2), 31–60
(2001)

35. Zhang, J., Tang, J., Ma, C., Tong, H., Jing, Y., Li, J.: Panther: fast top-k similarity search on large
networks. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD’15, pp. 1445–1454 (2015)

36. Zheng, Z., Wei, W., Liu, C., Cao, W., Cao, L., Bhatia, M.: An effective contrast sequential pattern mining
approach to taxpayer behavior analysis. In: Proceedings of the 25th International Conference on World
Wide Web, WWW’16, pp. 633–651 (2016)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Mingtao Lei1 · Lingyang Chu2 ·Zhefeng Wang3 · Jian Pei2 ·Caifeng He4 ·Xi Zhang1 ·
Binxing Fang1

Mingtao Lei
leimingtao@bupt.edu.cn

Lingyang Chu
lca117@sfu.ca

Zhefeng Wang
zhefwang@mail.ustc.edu.cn

Jian Pei
jpei@cs.sfu.ca

Caifeng He
hecaifeng@huawei.com

Binxing Fang
fangbx@bupt.edu.cn

1 Key Laboratory of Trustworthy Distributed Computing and Service (BUPT), Ministry of Education,
Beijing University of Posts and Telecommunications, Beijing, China

2 Simon Fraser University, Burnaby, Canada
3 University of Science and Technology of China, Hefei, China
4 Noah Ark’s Laboratory, Huawei Technologies, Shenzhen, China

mailto: leimingtao@bupt.edu.cn
mailto: lca117@sfu.ca
mailto: zhefwang@mail.ustc.edu.cn
mailto: jpei@cs.sfu.ca
mailto: hecaifeng@huawei.com
mailto: fangbx@bupt.edu.cn

	Mining top-k sequential patterns in transaction database graphs
	Abstract
	Introduction
	Related work
	Sequential pattern mining
	Sampling methods

	Problem definition and baseline
	Problem definition
	Hardness of the TSPMG problem
	Baseline

	A fast sampling-based method
	A two-step sampling framework
	Unbiased pattern frequency estimator
	Bounding the sample size

	Experiments
	Evaluation datasets
	Comparison methods and evaluation metrics
	Implementation details
	The results on synthetic datasets
	The effectiveness on the synthetic datasets
	The efficiency on the synthetic datasets

	Results on real-world datasets
	The effectiveness on real-world datasets
	The efficiency on real-world datasets

	A case study

	Conclusion
	References
	Affiliations

