GHAttack: Generative Adversarial Attacks on Heterogeneous Graph

Neural Networks

Shaoxin Li, Xiaofeng Liao, Fellow, IEEE, Huanzhang Zhu, Junqing Le and Lingyang Chu

Abstract—Heterogeneous graph neural networks (HGNNs)
have witnessed remarkable progress and widespread applications
in recent years. Meanwhile, there is growing attention regard-
ing their vulnerability to adversarial attacks. Existing attack
methods for HGNNs generate perturbations to slightly modify
the structure of a heterogeneous graph, thereby degrading the
predictive performance of HGNNs on target nodes. However, to
craft such a perturbation, these methods require solving a compli-
cated optimization problem, which makes them computationally
inefficient for launching attacks during the inference phase. In
this work, we therefore introduce GHAttack, a novel generative
attack method for efficient and effective adversarial attacks on
HGNNSs. Specifically, GHAttack aims to train a perturbation
generator, which produces a perturbation for each target node via
a simple forward pass, while allowing the perturbation to modify
edges on the heterogeneous relations of the graph to obtain high
attack effectiveness. To achieve this, we design a novel model
architecture for the generator, consisting of an HGNN backbone
and a relation-aware output layer. We formulate the training
of the generator as an optimization problem and efficiently
solve it by addressing a series of technical challenges. Extensive
experiments on ten representative HGNNs and six datasets verify
the high efficiency and excellent effectiveness of GHAttack.

Index Terms—Heterogeneous graph neural network, adversar-
ial attack, generative model, structure-based attack

I. INTRODUCTION

ETEROGENEOUS graph neural networks (HGNNs)
have attracted considerable research interest due to their
ability to handle heterogeneous graphs that consist of multiple
types of nodes and edges/relations. Through specialized learn-
ing processes, HGNNs capture rich semantics and complex
structure information from the heterogeneous relations of
the graphs, thus enabling the extraction of informative node
representations for graph mining [1]-[6]. In recent years, a
variety of HGNNs have been developed and have shown
excellent performance on a series of tasks, such as node
classification [7], link prediction [8], and recommendation [9].
Despite the remarkable success of HGNNs, their broad
application in many critical areas, such as e-commerce [10]

This work was done by Shaoxin Li during his visit at McMaster University
when supervised by Lingyang Chu. This work is supported in part by the
NSERC Discovery Grant program (RGPIN-2022-04977), in part by National
Natural Science Foundation of China (Grant no. 62202071), in part by the
Natural Science Foundation of Chongging (Innovation and Development Joint
Fund) under grant CSTB2023NSCQ-LZX0149, in part by the Fundamental
Research Funds for the Central Universities under grant 2023CDJKYJHO19,
and in part by the scholarship from China Scholarship Council. (Correspond-
ing author: Xiaofeng Liao)

S. Li, X. Liao and J. Le are with the College of Computer Science,
Chongqing University, Chongqing, 400044, China (email: {shaoxin.li, jun-
gingle, xfliao} @cqu.edu.cn).

H. Zhu and L. Chu are with the Department of Computing and Soft-
ware, McMaster University, Hamilton, L8S 4L8, Canada (email: {zhuh98,
chul9} @mcmaster.ca).

© Subject (5)
x Delete edge
Paper-Subject (P-S)

ﬁ?elation:A—P "\ (Relation: P-5 |\

© Author (A) © Paper (P)
o Target node + Add edge
Author-Paper (A-P)

N

a s
® @-

’
A
A
N
’
’
/

HGNN

is misclassified

is correctly classified

Fig. 1. An adversarial attack against an HGNN, which perturbs the struc-
ture of a heterogeneous graph. (Left) The original heterogeneous graph
with three node types { “Author (A)”, “Paper (P)”, “Subject (S)”} and two
edge types/relations {“Author-Paper (A-P)”, “Paper-Subject (P-S)”}. (Right)
Adding and deleting edges on the heterogeneous relations A-P and P-S.

and cybersecurity [11], has also drawn growing attention to
their vulnerability against adversarial attacks. A few recent
studies [12]-[14] have revealed that a well-trained HGNN for
node classification is susceptible to adversarial perturbations,
which slightly modify the structure of a heterogeneous graph
(e.g., adding or deleting edges) to mislead the HGNN to make
incorrect predictions for target nodes in the graph (as shown
in Fig. 1).

While effective, the attack methods proposed in [12]-[14]
are not time-efficient, as they require generating a perturbation
for each target node by solving a complicated optimization
problem. Moreover, since every perturbation is target-specific,
the perturbation for each target node must be independently
optimized from scratch. Consequently, it is impractical for
these methods to launch rapid and massive attacks during the
inference phase [15]. For example, HGAttack [13] takes over
40 hours to generate perturbations for 13,000 target nodes on
the DBLP dataset [1].

In this work, we therefore study a novel problem of efficient
and effective adversarial attacks on HGNNs, where the
goal is to launch fast attacks while achieving a high attack
success rate. To the best of our knowledge, this is a new
yet challenging problem that has not been well investigated
in the literature. As to be discussed in Section II, existing
optimization-based methods [12]-[14], [16]-[19] cannot effi-
ciently launch an attack for HGNNs due to the expensive time
cost of solving an optimization problem to generate a pertur-
bation. Furthermore, existing model-based methods [20]-[24],

which are designed for attacking classic graph neural networks

(GNNs) [25] on homogeneous graphs, fail to achieve high

attack effectiveness when applied to target HGNNs on hetero-

geneous graphs, as they overlook the graph heterogeneity and

can only perturb edges on a single relation of the graph [12],

[13], [26] (e.g., edges either on relation “A-P” or on relation

“P-S” in Fig. 1).

To tackle this problem, we introduce a novel attack method
called generative heterogeneous attack (GHAttack). The
key idea of GHAttack is to train a parametric model, named
perturbation generator, such that 1) producing a perturbation
for each target node only involves a forward pass through the
generator, and 2) the produced perturbation modifies edges
on heterogeneous relations to attain high attack effectiveness.
Once trained, the generator is used during the inference phase
to launch rapid and effective attacks against HGNNs for new
target nodes.

To achieve this purpose, we first mathematically model a
perturbation to represent edge modifications on heterogeneous
relations. Then we design a novel model architecture for the
generator by an HGNN backbone and a relation-aware output
layer, such that its output characterizes the distribution of
a perturbation. By adopting a CW-type loss function [26]
to evaluate the effectiveness of perturbations, we formulate
the training of the generator as an optimization problem,
with the goal of maximizing the expected effectiveness of
produced perturbations. Next, we propose a new method to
solve the optimization problem by leveraging the Gumbel
softmax trick [27]. In addition, we present two strategies to
further improve efficiency by reducing the perturbation search
space. We systematically evaluate the proposed GHAttack and
compare it with five baseline methods on ten representative
HGNNSs and six benchmark datasets. Extensive experiments
verify that GHAttack not only delivers efficient attacks by
quickly generating perturbations for target nodes, but also
demonstrates high attack effectiveness comparable to that of
the best optimization-based method.

To sum up, the key contributions of this work are as follows.
o To our best knowledge, this is the first study on achieving

both time-efficient and effective adversarial attacks against

HGNNSs. We propose a novel attack method named GHAt-

tack, which successfully addresses the limitations of existing

attack methods to achieve high attack effectiveness while
maintaining high attack speed.

o GHAttack aims to train a perturbation generator that can
swiftly produce a perturbation for each target node to modify
edges on heterogeneous relations. To this end, we design a
novel architecture for the perturbation generator, formulate
its training as an optimization problem, and efficiently
solve this problem by innovatively and effectively utilizing
multiple techniques to tackle a series of technical challenges.

« We conduct extensive experiments on ten HGNNs and
six benchmark datasets to demonstrate the excellent attack
efficiency and great attack effectiveness of GHAttack.

II. RELATED WORKS

In this work, we investigate adversarial attacks on het-
erogeneous graph neural networks (HGNNs). We focus on

evasion attacks that occur during the inference phase, where
an attacker aims to mislead a well-trained HGNN with fixed
parameters to make incorrect predictions on targets. Our work
generally relates to two categories of attack methods for graph
neural networks (GNNs), i.e., optimization-based methods and
model-based methods.

Optimization-based methods. Given a target, such as a
node, an edge or a graph, optimization-based methods for-
mulate the attack as an optimization problem and solve it
via typical techniques such as gradient descent to generate
a target-specific perturbation. This perturbation is then used
to perturb graph structure or node features for a successful
attack. Such attack strategy has been proven to be effective
against both classic GNNs on homogeneous graphs [16]-
[19] and HGNNs on heterogeneous graphs [12]-[14], [26].
Nevertheless, since solving the optimization problem generally
requires multiple iterations to update the perturbation, the time
cost for a single attack can reach hundreds of seconds in
the worst case [28], [29]. Consequently, a major limitation
of the optimization-based methods lies in their inefficiency in
launching rapid, large-scale attacks.

Model-based methods. Instead of crafting a perturbation
through optimization, model-based methods [20]-[24] train a
parametrized model from which a perturbation for a given
target can be produced through simple computations (e.g.,
a forward pass). Once trained, the model can generalize to
quickly generate perturbations for new targets, thus resulting in
much faster attack speed than the optimization-based methods.
Two main types of models have been studied, including the
GNN family models [21]-[24] that are trained using either
gradient-based methods or reinforcement learning, and the
anchor node models [20] where the perturbation for a target
node is inferred by flipping its connections to a set of anchor
nodes.

Despite the fast attack speed, these model-based methods
cannot handle graph heterogeneity since they are designed to
target classic GNNs on homogeneous graphs that consist of
a single type of edges [13], [26]. Therefore, when applied
to attack HGNNs on a heterogeneous graph, they can only
perturb edges on a single relation of the graph [12], [13], [26].
This limits their attack effectiveness, as HGNNs make predic-
tions relying on messages passed by edges on heterogeneous
relations rather than on a particular one.

Different from the above methods, we study a more chal-
lenging attack against HGNNs that pursues both high effi-
ciency and high effectiveness. Our attack method, GHAttack,
falls in the category of model-based methods by introducing
a perturbation generator, thus eliminating the necessity of
solving a time-consuming optimization problem to produce
a perturbation. Furthermore, GHAttack bridges the research
gap between model-based methods and adversarial attacks on
HGNNSs by enabling the generator to search for perturbations
on heterogeneous relations. This offers great potential to
achieve a higher attack success rate on HGNNs.

III. PRELIMINARIES
A. Heterogeneous Graph

A heterogeneous graph, defined as G = {V,&,X,T,R},
consists of a set of nodes V and a set of edges £. Each node
v € V is associated with a feature vector of real numbers that
captures the meta information of each node. We denote by
X the set of all node features in the heterogeneous graph G.
Each node v is also associated with a node type, where the
set of all node types is denoted by 7 = {T4,...,T,}. Each
edge e € £ is associated with an edge type, where the set of
all edge types is denoted by R = {Ry,..., R;}. Here, ¢ and
I are the number of node types and edge types, respectively.
A classic heterogeneous graph G has ¢ + 1 > 2 [8].

Example 1. Fig. [illustrates an example of a classic het-
erogeneous graph, where the set of node types is T =
{ “Author”, “Paper”, “Subject”} and the set of edge types is
R = {“Author-Paper”, “Paper-Subject”}. For the simplicity
of notations, we represent all node types by their initials, that
are, “A”, “P”, and “S”, respectively; and we write the edge
types using abbreviations “A-P” and “P-S”, correspondingly.

In this work, we consider a typical kind of heterogeneous
graph, where an edge type is determined by (i.e., matches
with) the types of the two connected nodes [1], [30], [31]. In
this case, an edge type is also referred to as a relation [12],
[13], [26]. For instance, in Example 1, the relation “A-P” is
determined by the node types “A” and “P”. Formally, we define
a relation as R; := T,-T, € R, where T, € T and T, € T
are the two associated node types.

Following the prior works [12], [13], [26], we treat a hetero-
geneous graph G with [relations as a set of [bipartite graphs.
For instance, the heterogeneous graph in Fig. 1 is viewed
as two bipartite graphs corresponding to the heterogeneous
relations “A-P” and “P-S”, respectively. Each bipartite graph,
which corresponds to a relation R; := T,—T; € R, consists
of edges of a single type and describes the connectivity of
nodes of types 7T, and T,. We represent its graph structure
by a binary adjacency matrix Agp, € {0,1}N7a:*N1, - where
N7, and N7, are the number of nodes in the heterogeneous
graph G with types 7, and T}, respectively. Let v(") be the
m-th node of type T, and v(™ be the n-th node of type T}
in G. The entry [AR,]m,» at the m-th row and n-th column
of Ap, indicates the existence of an edge of type R; between
the nodes v("™) and v(™). Denoted by A = {AR,,..., Ag,}
the set of binary adjacency matrices corresponding to the
heterogeneous relations Ry, ..., I, it characterizes the overall
graph structure of the heterogeneous graph G.

B. Heterogeneous Graph Neural Network

Heterogeneous graph neural networks (HGNNs) are a sub-
class of graph neural networks specializing in handling het-
erogeneous graphs. A typical HGNN, denoted as f, generally
takes a heterogeneous graph G as input, while its output varies
depending on the specific tasks. In this work, we focus on the
representative node classification task of HGNNs [30], [32].
Specifically, let C = {1,2,...,C} be a set of class labels, an
HGNN f aims to predict the class label of a node v in the

heterogeneous graph G by producing a C'-dimensional vector
of classification logits § € R®. This process is expressed as

§=rf(AX,v), (D

where A represents the graph structure of G and X is the set
of node features. The predicted class label for v is computed
by amgmanC:1 1;, where §; is the j-th entry of the vector g.

IV. PROBLEM DEFINITION
A. Threat Model

In the following, we present the threat model used in this
paper, which includes three aspects.

Attackers’ goal. We consider the non-targeted evasion at-
tack against HGNNSs. Concretely, given a well-trained HGNN
f that performs node classification on a heterogeneous graph
G, an attacker aims to perturb G such that a target node v on
the perturbed graph is misclassified by the victim HGNN f.
An attack succeeds if the predicted class label of v on the
perturbed graph is different from its ground-truth class label.

Attackers’ prior knowledge. We consider both the white-
box [23], [26] and the gray-box attack settings [12], [13]. In the
white-box setting, we assume that the attacker has full access
to the heterogeneous graph G and the labels of the training
nodes of G, as well as the architecture and parameters of the
victim HGNN f. In the gray-box setting, we assume that the
attacker only has access to the heterogeneous graph G and
the training labels, lacking any knowledge about the victim
HGNN f. This is also considered as the non-strict black-box
setting in [26].

Attackers’ capabilities. We assume that the attacker can
only modify the graph structure of the heterogeneous graph
G with a limited budget [13], [23], [26]. To attack the target
node v, the attacker can add new edges or delete the existing
edges in G. To ensure that this attack is unnoticeable, we set a
budget £ € ZT to guarantee that the total number of modified
edges is not larger than &.

B. Problem Statement

Given a victim HGNN f that performs node classification
on a heterogeneous graph G, a target node v in G and a
predefined budget £ € ZT, the goal of efficient and effective
adversarial attacks against HGNNs is to swiftly generate
a perturbation to perturb G by adding and deleting at most
& edges, such that the victim HGNN f will misclassify the
target node v by producing an incorrect class label. More
specifically, the perturbation modifies the graph structure of G
that is represented by a set of binary adjacency matrices A =
{AR,,..., AR}, to a different graph structure represented by
another set of binary adjacency matrices of the same sizes,
denoted by A = {Ag,,...,Ag,}, to ensure f(A, X,v) #y
where y € C is the ground-truth class label of the target node
v, while satisfying 2221”14}21: — A, |1 <€

V. GENERATIVE HETEROGENEOUS ATTACK

In this paper, we propose a novel attack method, called
generative heterogeneous attack (GHAttack), for efficient and

effective adversarial attacks on HGNNSs. At its core, GHAttack
trains a perturbation generator gy parameterized by 6, such
that for a target node v, an effective perturbation representing
limited edge modifications on a heterogeneous graph G can
be swiftly produced via a forward pass through gg. In the
following, we first introduce the modeling of such a pertur-
bation and the design details of gg. Then, we formulate the
training of gy as an optimization problem and efficiently solve
it by tackling technical issues. Next, we present the training
algorithm for gy and the details of launching an attack using
the trained gy during the inference phase. Last, we analyze the
time complexity of our attack method.

A. Modeling Perturbation

We first model a perturbation in order to describe mathe-
matically the set of edge additions and deletions it involves.
In particular, we aim to perform these edge modifications on
the heterogeneous relations of the heterogeneous graph G. To
achieve this, for each relation R; := T1,-1; € R, we define
a binary perturbation matrix Pg, € {0, 1}V7XN7, of the
same size as the binary adjacency matrix Ag, to represent the
edge modifications on the relation R;. The m-th row and n-th
column entry of Pg,, denoted by [Pg, |, indicates whether
to flip the binary entry [AR,|m . That is, if [Pgr,]Jmn = 1,
then flip [AR,|m.n to add or delete the edge corresponding
to [AR,]m,n; otherwise, do not flip [Ag,]m.» and keep the
edge status unchanged. Let P = {Pg,, ..., Pr,} be the set of
binary perturbation matrices for the [relations of G, since it
exactly defines a set of edge modifications on heterogeneous
relations, we abuse the term of perturbation to refer to it.

Given a perturbation P = {Pg,,..., Pr,}, we leverage it
to modify the graph structure of G, which is represented by

A = {AR,,..., AR}, to a different graph structure denoted
by A ={Ag,,...,ARr,}. Specifically, on each relation R; €
R, we have

ARi:ARi—’—(AiRi_ARi)@PRi? (2)

where the complement matrix A, is obtained by flipping all
binary entries in Ag, and ©® denotes the Hadamard product
between two matrices. For simplicity, we introduce a perturb-
ing function () to summarize the above process for all the
relations in R, which is stated as

A=Q(ATP). 3)

B. Designing Perturbation Generator

In this subsection, we detail the design of the perturbation
generator gg that is used in GHAttack to swiftly generate
a perturbation P for a target node v. Since P consists of
multiple binary perturbation matrices on different relations,
it requires gy to predict the values of entries in each of
these perturbation matrices. To this end, we implement gy as
consisting of an HGNN backbone and a relation-aware output
layer, as described below.

HGNN backbone. To obtain useful information for pre-
dicting the perturbation P, we employ an HGNN backbone
to extract node embedding for all nodes in the heterogeneous

graph G. Formally, denoted by h,, an HGNN backbone param-
eterized by 7, we express the extraction process as

2002V = h, (A, X), (4)

where |V is the number of nodes in G and z() € R¥ is the
H-dimensional embedding for the j-th node o) of g.

Relation-aware output layer. Following the HGNN back-
bone h,, the output layer of the generator gy leverages the
information encoded in the node embeddings to predict the
values of entries in the perturbation P. Recall that different
perturbation matrices of P are associated with different rela-
tions, and each of them indicates the edge modifications on
a particular relation. Therefore, when predicting the values of
entries in each perturbation matrix, we propose to leverage
relation-specific information encoded in the node embeddings
to provide more accurate predictions.

Concretely, for an entry [Pg, |m.» in the perturbation matrix
Pr, associated with the relation R; := T,,—T} € R, denoted by
v(™) the m-th node of type T, and v("™) the n-th node of type
Ty, we further process their node embeddings to acquire the
information specifically related to R;. Taking the node v(™)
as an example, we convert its node embedding (™ to the
relation-specific embedding zg?) as follows:

1
|NRi

ST

CENRi

W, 29 + W™, (5)

where Ay, is the index set of the neighboring nodes connected
to v(™ through the relation R;, and Wg, € R¥*H and
Wy € RHE*H are trainable weight matrices. Next, instead of
predicting the binary value of [Pg,]m.n, We use the relation-
specific embeddings to estimate the probability that the value
of [Pr,]m.n equals to one. This circumvents the issue of non-
differentiability caused by predicting binary values through
quantization. Denote this probability as qbg:"n), it is computed

by
) =o (0 (Mo (27 +21))) . ©
where zg?) and zgz) are, respectively, the relation-specific

embeddings of the nodes v(™ and v(™ with respect to the
relation R;. My € R/2XH and M; € RYH/2 are trainable
weight matrices, and o(-) is the sigmoid function.

Built upon the HGNN backbone h,, and the relation-aware
output layer, the generator gy outputs a set of probabilities for
the target node v, denoted as ® = gy(A, X, v). By treating
each binary entry [Pg,|m,» as a Bernoulli random variable
and P([Pgr,]mn = 1) = (bg?’n), the set of probabilities ®
collectively characterizes a multivariate Bernoulli distribution
over the perturbation P. Thus, we have

P ~ Ber(®) = Ber(gg(A, X, v)), 7

where 6 = {n, Wg,,...,Wg,, Wo, My, My}.

C. Formulating the Training

In this subsection, we formulate the training of the generator
gp as an optimization problem, such that a perturbation P
sampled from the output of gy can effectively attack the victim

HGNN f for the target node v. We start by considering the
white-box setting where f is known to the attacker, and then
discuss the formulation in the gray-box setting where f is
unknown to the attacker.

First, we introduce a CW-type loss function [26] to evaluate
the attack effectiveness of a perturbation P. Let A represent
the graph structure perturbed by P according to (3), the output
of f for the target node v on the perturbed graph A is a vector
of classification logits § = f(fl, X, v), where the j-th entry
in the vector ¢, denoted by §;, is the logit value for the j-th
class. Then, the attack effectiveness of the perturbation P is
evaluate by

L(:l), y) = max(gy - maxﬁj, _"{)a (8)
J#y

where y € C is the ground-truth class label of the target node
v and k > 0 is a real-valued parameter used to control the
degree of misclassification. Here, ¢, is the logit value for
the ground-truth class label and max;, 7; is the largest logit
value among the other classes. A smaller loss value of L(§,y)
means a higher degree of misclassification, implying higher
attack effectiveness of P. A larger value of the parameter s
allows for a higher degree of misclassification.

Next, we formulate the training of the generator gy in the
white-box setting as the following optimization problem:

mein EUNVLEPNBcr(gg(.A,X,v)) [L(f(Q (Av 7))) X’ v, y)
l
+A max(z || Pr,

i=1

1 _570)}7
9)

where Vy, is the empirical distribution specified by a set of
labeled nodes in the heterogeneous graph G and A > 0 is
a genalty parameter for violations of the budget constraint
> i1 IPr,ll; < & Minimizing the objective function in (9)
essentially maximizes the attack effectiveness of the pertur-
bations sampled with high probability from the distribution
Ber(gg(A, X, v)) while encouraging these perturbations not
to violate the budget constraint. Thus, the trained generator g
is expected to generalize to produce effective perturbations
for new target nodes during the inference phase using the
same budget. In practice, we gradually increase the penalty
parameter A\ during training so that the perturbations sampled
from the trained gy are likely to adhere to the budget &.

In the gray-box setting, the victim HGNN f in (9) is not
accessible to the attacker. Instead, the attacker can use a
surrogate HGNN (denoted as fg) to substitute f and solve
the same problem in (9) to train gg. The surrogate HGNN
fs adopts a different model architecture than f, but it is also
trained to perform node classification on the heterogeneous
graph G. The key idea is that, if a perturbation produced by the
trained gy can effectively attack fg, then it may also be able to
successfully attack f due to the high task relevance between fg
and f. This is also well-known as transfer adversarial attacks
in the literature [14], [15], [26].

D. Solving the Optimization Problem

Solving the optimization problem in (9) needs to explicitly
compute the expectation EPNBer(ge(A, X v)) [-] for every target

node v. However, this could be computationally expensive as it
involves computing each probability in ® by (6) and the loss
term L(f(Q(A, P), X,v),y) + Amax(3i_; | Pr, |1 — &,0)
for each possible perturbation. Denote by k the maximum
time cost of computing each probability in ® and by w the
maximum time cost of computing the loss term for each
possible perturbation. Since the maximum number of entries
in ® is equal to the maximum number of possible edges in
the heterogeneous graph G, which is |V|(|]V| — 1)/2, and the
maximum number of possible perturbations is 2/VI(IVI=1)/2,
the worst-case time cost of computing Ep . ger(gy(4,x,0))[]
is k|V([V| = 1)/2 + w2V V=02 o O (k]2 + w2lVT).
Consequently, the doubly exponential growth makes the exact
computation of this expectation infeasible for large |V|.

To tackle this issue, we propose a method to reduce the time
complexity of computing the expectation Ep ger(g, (4, x,0))[']
to be linear in |V|. This is accomplished by first reducing
the perturbation search space and then applying the Gumbel
softmax trick [27], which is described as follows.

Reducing the perturbation search space. Computing the
probabilities in ® for at most |V|(|]V| — 1)/2 entries means
deciding whether to perturb each of the possible edges on G,
which constitutes a perturbation search space of size |V|(|V|—
1)/2. As a result, if |V| is very large, the huge perturbation
search space would make the computation expensive.

To address this issue, we propose to reduce the perturbation
search space by selecting a small subset of possible edges
as candidate edges for perturbing and only computing the
probabilities in ® corresponding to the selected candidate
edges. We present two strategies to select the candidate edges
that may have a significant influence on classifying the target
node v. Strategy 1: any existing edge within the subgraph
induced by the e-hop (e € Zx>() neighborhood of v is selected
as a candidate edge for deletion. Strategy 2: for all non-existing
edges that can connect v with another node v, € V \ v on a
valid relation, we uniformly sample a proportion 3 € [0,1] of
them at random as the candidate edges for addition.

Strategy 1 allows us to predict the deletion of an existing
edge within the e-hop subgraph of the target node v. Denoted
by |€] the number of edges in G. The maximum size of the
perturbation search space derived from this strategy is |£] if
€ is large enough such that the e-hop subgraph is the entire
graph. Strategy 2 allows us to predict the addition of a non-
existing edge selected with probability 5 that can connect v to
another node in G through a valid relation. We do not consider
adding non-existing edges that are not directly connected to v,
as it has been demonstrated to be less effective for attacks [33].
The maximum size of the perturbation search space derived
from this strategy is |V| — 1 if 8§ = 1. Thus, the proposed
strategies reduce the maximum size of the perturbation search
space from |V|(|V]| —1)/2 to |[V|+|&] — 1. Since |£] is often
larger than |V| by a constant factor due to the high sparsity
of real-world graphs, we have || ~ O([V]). Therefore, the
time complexity of computing Ep . ger(g,(4,x,0))[] is reduced
to k(|V| + €] — 1) + w2VIFE=L ~ O(kV| + w2!V]). For
the existing or non-existing edges that are not selected as the
candidate edges by the proposed two strategies, we do not

compute the probabilities in @ that correspond to them and
simply set these probabilities to zeros.

Applying the Gumbel softmax trick. Given the reduced
perturbation search space, we apply the Gumbel softmax trick
to further reduce the time complexity of computing the expec-
tation Ep per(g,(4,x,0))[-]- Essentially, the Gumbel softmax
trick is a differentiable approximate sampling mechanism,
which allows us to estimate Epger(g,(4,x,0))[] by the Monte
Carlo method [34] while preserving the gradients with respect
to 0. We apply it by the following two steps.

First, we approximate the discrete perturbation P in (9) by
a smooth perturbation of the same size as P, denoted by S.
This approximates each entry [Pg,]m,» in P by

log a + log[Ug, |m.n — log(1 — [Ugr,|m.n
[SR,,]m,na(g glUr,] = g(1 — [Ur,])>’
(10
where a = g?’n)/(l — Sé’f’”)), [UR,Jmn ~ Unif(0,1)

is a uniform random variable and 7 > 0 is a temperature
parameter. A smaller value of 7 makes the entries in S get
closer to 0 or 1.

Second, we convert the optimization problem in (9) to

]E'UNVL IEZ/INUnif(O,l) [L (f (Q (A7 S) 7X7 ’U) 7y)

l (11)
+amax (3 Skl —£.0)],

i=1

min
0

where U has the same size as S and each of its entries
[Ugr;|m,n is an independent random variable following the
uniform distribution Unif(0, 1).

By applying the above Gumbel softmax trick, we can ap-
proximate the expectation Ep ger(q,(4,x,0))[-] by computing
the expectation Ey;unif(0,1)[-] in (11). Following the routine
of the Gumbel softmax trick [27], [35], Ey~unif(o,1)[] can
be estimated by first sampling the entries of U from the
uniform distribution Unif(0,1) and then computing the loss
term L(f(Q(A,8), X,v),y) + Amax(3;_, [|Sg, |1 — €,0).
The time cost of this estimation is (k+1)(|V|+|E]—1)+w ~
O(k|V|+w) because it takes k(|V|+|E| —1) time to compute
@, |V| +|€] — 1 time to compute the entries in S by (10), w
time to compute the loss term and we have |£] ~ O(|V|) due
to the high sparsity of real-world graphs.

In summary, the time complexity of using the proposed
method to estimate the expectation Ep per(g,(4,x,0))[-] i
O(k|V| + w), which grows linearly with |V|. This is much
more efficient than explicitly computing Ep ger(gy (A, x,0)) [']-
The optimization problem in (11) can be directly solved by
gradient descent, thus enabling us to train the generator gy in
an end-to-end manner.

E. Training Procedure

Now we present the procedure for training the generator gy,
which is summarized in Algorithm 1.

Overall, we train gy by stochastic gradient descent. We first
initialize the parameters 6 of gy by the Kaiming initializa-
tion [36] (step 1), and set the number of training iterations ¢
(step 2), the penalty parameter A (step 3) and the temperature
parameter 7 (step 4) to one. During each training iteration, we

Algorithm 1: Training the perturbation generator gy
Inputs : The victim HGNN f or the surrogate HGNN
fs, the heterogeneous graph G with the
training nodes, the parameters «, € and f3,
and the budget &.
Output: The trained generator gy.
1 Initialize € by the Kaiming initialization [36].
2 Initialize the number of training iterations ¢ = 1.
3 Initialize the penalty parameter A = 1.
4 Initialize the temperature parameter 7 = 1.

5 do

6 Vp < Sample a batch of training nodes.

7 for each target node v € Vg do

8 Select the candidate edges of v according to
the proposed two strategies.

9 end

10 Compute the average loss on Vg by (11).

11 Compute the gradients with respect to 6.

12 Update € by the ADAM optimizer [37].
13 if t mod 1000 = O then

Update 7 by (12).

Update A < 10 x A.

16 end

17 Update ¢ <t + 1.
18 while not converge;
19 return gg.

first sample a batch of training nodes Vg (step 6). Then, for
each target node v € Vp, we select the candidate edges of
v according to the proposed two strategies (step 8). Next, we
compute the average loss on Vg by (11) (step 10) and compute
the gradients of 6 by backpropagation (step 11). Finally, we
use the ADAM optimizer [37] to update 6 (step 12). For every
1,000 training iterations, we update the values of 7 and A (steps
14-15). The temperature parameter 7 is gradually reduced to
avoid introducing a large variance in the gradients computed
early in the training and to make the smooth perturbation &
closer to discrete as the training proceeds [27], [35]. We adopt
the following annealing schedule for 7:

7(t) = max (0.01, e~ *01) | (12)

where 7(t) is the value of 7 at the ¢-th training iteration. The
penalty parameter A is increased by ten times. We update the
number of training iterations ¢ at the end of each training
iteration (step 17).

F. Conducting Attacks

During the inference phase, we use the generator gy trained
by Algorithm 1 to conduct attacks on victim HGNNSs. For a
new target node vy, We can first compute ® = gg (A, X, Unew)
based on the candidate edges selected by the proposed two
strategies, and then sample a perturbation P according to
the distribution Ber(®) to perturb the heterogeneous graph
G. However, this raises two issues. First, P may add new
edges that are not semantically meaningful. For example, in
an academic network, P may add an edge between a paper

Algorithm 2: Conducting an attack for a node vyey

Inputs : The generator gy, the link predictor fjs, the
heterogeneous graph G, the new target node
Unew, the parameters € and 3, the threshold &
and the budget &.
Output: A perturbed heterogeneous graph G’.
1 Select the candidate edges of v, according to the
proposed two strategies.
2 Use gy to compute the probabilities in ®
corresponding to the candidate edges.
3 Sort the candidate edges by their corresponding
probability values in ® from largest to smallest.
4 Initialize the counter ¢ = 0.
5 for each candidate edge e in the sorted set do

6 if e exists then

7 Delete e from the heterogeneous graph G.
8 Update ¢ - c+ 1.

9 else if e does not exist then

10 if far(e) > 0 then

11 Add e to the heterogeneous graph G.
12 Update ¢ <— c+ 1.

13 end

14 if ¢ = ¢ then

15 | break.

16 end

17 end

18 return G’.

on medieval literature and a machine learning conference.
However, since the medieval literature paper is unlikely to
be published at the machine learning conference, the added
edge is not semantically meaningful. Such semantic meaning-
lessness could make it easy to detect these malicious edges.
We do not consider the semantic meaningfulness of deleting
an edge because most real-world graphs are incomplete and
missing information. Second, P may not adhere to the budget
constraint by containing more than ¢ edge modifications.

To tackle the first issue, we introduce an HGNN-based link
predictor, denoted by fjs, to determine the semantic mean-
ingfulness of adding a new edge e. Specifically, fy is trained
to perform link prediction task on the heterogeneous graph G.
The prediction score of fi; on e, denoted as far(e) € (0,1),
measures the semantic meaningfulness of adding e to G. We
consider adding e to be semantically meaningful if fa;(e) > §
and meaningless otherwise, where 0 < ¢ < 1 is a threshold.

The intuition behind this is that a well-trained link predictor
captures the underlying connectivity patterns of the graph.
Therefore, if two nodes share meaningful attributes and are
likely to be connected based on graph topology, then the
link predictor will score the edge between the two nodes
highly [38], [39]. Accordingly, if fas assigns a high prediction
score to e, then e is likely to be a plausible edge within
the given graph, ensuring that the modification of adding e
maintains realism and is semantically meaningful.

To address the second issue, instead of sampling a perturba-
tion P from the distribution Ber(®), we adopt the following

steps to perturb exactly ¢ candidate edges. Specifically, we
first sort the candidate edges by their corresponding probability
values in @ from largest to smallest. Then, starting from the
first candidate edge e, we perturb it if (1) e exists, or (2) e
does not exist and fys(e) > . We repeat this process until a
total number of ¢ candidate edges are perturbed. In this way,
only ¢ edge modifications are performed, thus satisfying the
budget constraint.

Algorithm 2 summarizes the process of launching an attack
for a new target node vney. We first select the candidate edges
of vpew by the proposed strategies (step 1). Then, we compute
the probabilities in @ corresponding to the selected candidate
edges (step 2). Next, we iteratively perturb £ candidate edges
following the steps presented above (steps 3-17).

G. Time Complexity Analysis

In this subsection, we analyze the time complexity of the
proposed algorithms.

Time complexity of Algorithm 1. Denote by [the total
number of training iterations, the time cost of Algorithm 1
mainly consists of the time costs of the I training iterations.
In each training iteration, denoted by B the batch size, we use
a batch of B target nodes Vg to train the generator gg. This
process consists of four phases and we analyze the time cost
of each of these phases as follows.

The first phase corresponds to steps 7-9 of Algorithm 1,
where we use the proposed two strategies to select the candi-
date edges for each target node v in Vp. For Strategy 1, we
perform the breadth-first search (BFS) algorithm to find the
existing edges in the e-hop neighborhood of v. In the worst
case where the subgraph induced by the e-hop neighborhood is
the entire graph, the time cost of the BFS is [V|+|€| because it
must traverse the entire graph. Thus, the worst-case time cost
of performing Strategy 1 is |V| + |€|. For Strategy 2, since
sampling a proportion S of non-existing edges connecting to
v requires checking all nodes except v in the worst case,
the worst-case time cost of performing Strategy 2 is [V| — 1.
Therefore, the worst-case time cost of the first phase to process
B target nodes in Vg is B(2|V| + |€] — 1).

The second phase corresponds to step 10 of Algorithm 1,
where we compute the average loss on Vp by (11). This
requires performing a forward pass for each target node in
Vp by computing the expectation Ey unif(o,1y[-] in (11).
As discussed in Section V-D, the worst-case time cost of
estimating Eyyunir(0,1)[-] is (kK +1)(|V[+ €] — 1) +w. Thus,
the worst-case time cost of the second phase to forward pass
B target nodes in Vg is B((k+ 1)(|V|+ €] — 1) + w).

The third phase corresponds to step 11 of Algorithm 1,
where we compute the gradients of the parameters 6 for Vg via
backpropagation. This typically has a time cost of roughly two
times that of the forward passes in the second phase. Thus, the
time cost of the third phase is 2B((k+1)(|]V|+|€] — 1) + w).

The fourth phase corresponds to step 12 of Algorithm 1,
where we use the ADAM optimizer to update €. The time cost
of this update is proportional to the number of parameters of
the generator gy, which is denoted as |f|. However, since the
time cost of using gy to compute each probability in @ is k,

which implicitly depends on |f| because a larger gy increases
k, we approximate the time cost of the update by k. Thus, the
time cost of the fourth phase is k.

To summarize, the time cost of each training iteration is the
sum of the time costs of the four phases described above, and
the time cost of Algorithm 1 is the sum of the time costs of the
I training iterations. Thus, the time complexity of Algorithm 1
is I(B((3k +5)|V| + Bk + 1)|E] + 3(w — k) —4) + k) ~
O(IB(k|V|+k|&|+w)). Due to the high sparsity of real-world
graphs, we have |£] ~ O(|V]). Thus, the time complexity
becomes O (IB(k[V|+ w)). Since I and B are constants and
k and w are not affected much by the size of the graph, the
time complexity of Algorithm 1 grows linearly with |V|, which
makes Algorithm 1 time-efficient.

Time complexity of Algorithm 2. The time cost of Al-
gorithm 2 mainly consists of the time costs of four phases,
which are analyzed as follows.

The first phase corresponds to step 1 of Algorithm 2, where
we use the proposed two strategies to select the candidate
edges of the new target node vney. As discussed earlier, the
worst-case time cost of this step is 2|V| + |€] — 1.

The second phase corresponds to step 2 of Algorithm 2,
where we use gp to compute the probabilities in ® corre-
sponding to the selected candidate edges. Since the maximum
number of the candidate edges is equal to the maximum size
of the reduced perturbation search space |V| + |€] — 1, the
worst-case time cost of the second phase is k(|V| + €] — 1).

The third phase corresponds to step 3 of Algorithm 2, where
we sort the candidate edges by their corresponding probabil-
ities in ®. Since the time cost of a sorting algorithm for n
elements is typically cnlogn where c is a constant depending
on implementation details of the sorting algorithm, the time
cost of the third phase is c¢(|V| + |E] — 1) log(|V| + |E] — 1).

The fourth phase corresponds to steps 5-16 of Algorithm 2,
where we iteratively perturb £ candidate edges based on the
existences of the edges and the prediction scores of the link
predictor fj; on the edges. Denoted by p the maximum time
cost of using fy; to score an edge. In the worst case, we need
to iterate over all the candidate edges and use fj; to score
each of them. Thus, the worst-case time cost of the fourth
phase is p(|V|+ €] — 1).

To summarize, the time cost of Algorithm 2 is the sum of the
time costs of the four phases described above. Thus, the time
complexity of Algorithm 2 is |V|+(k+p+clog(|V|+|E]—1)+
(V] + (8] = 1) ~ O((k + 1 + clog(IV] + [ED) (V] + [ED)-
Since |£] ~ O(|V|), the time complexity becomes O((k +
w4+ clog(|V]))[V|). Since c is a constant and k and y are not
affected much by the size of the graph, the time complexity
of Algorithm 2 grows quasilinearly with |V|, which makes
Algorithm 2 time-efficient.

VI. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed GHAttack and compare it with other attack methods
on multiple HGNNs and datasets. In particular, we wish to
answer the following research questions: Q1: How effective is
GHAttack in the white-box attack setting? Q2: How effective

TABLE I
CHARACTERISTICS OF THE VICTIM HGNNS IN DIFFERENT DIMENSIONS
OF MODEL DESIGN.

Victim Meta-path Attention Model Model
HGNN usage mechanism Architecture Complexity
RGCN None None GCN Simple
HGT None Relation-level Transformer Complex
SimpleHGN None Relation-level GCN Simple
HAN Explicit Meta-path-level GCN Simple
HAN-RoHe Explicit Meta-path-level GCN Simple
GTN Implicit Relation-level Transformer Complex
HetSANN Implicit Type-aware GCN Complex
MHNF Implicit Hierarchical GCN Complex
AGAT None Aspect-aware GCN Simple
HAGNN Explicit Hierarchical GCN Complex

is GHAttack in the gray-box attack setting? Q3: How effective
is GHAttack against different defenses? Q4: How fast is
GHAttack in launching attacks? QS: What is the distribution
of edges perturbed by GHAttack? Q6: How does GHAttack
perform with different hyperparameters? Q7: How scalable
is GHAttack? Q8: How efficient is the training of GHAttack?
Q9: How does GHAttack perform with different generator gg?
Q10: How does the link predictor f,; affect GHAttack? Due
to the page limit, we answer Q5-Q10 in Appendices A-F of
the supplementary material.

A. Experimental Settings

Victim HGNNs. We use ten representative HGNNs for
evaluation, including RGCN [32], HGT [8], SimpleHGN [31],
HAN [1], HAN-RoHe [12], GTN [30], HetSANN [2],
MHNF [7], AGAT [5] and HAGNN [6]. Among them, HAN-
RoHe is a robust model that is specifically designed to resist
structure-based adversarial attacks. We choose these HGNNs
as victim models because they exhibit good diversity across
several dimensions of design, as shown in Table 1. The
hyperparameters of each victim HGNN are adopted from its
original implementation.

Datasets. We adopt six heterogeneous graph datasets that
are used for node classification. As shown in Table II, these
datasets are diversified in terms of graph statistics, class
distribution of target nodes, presence of noise and semantic
domains. We elaborate their detailed descriptions as follows.

o ACM [40]. This is a citation network consisting of nodes of
types “Paper”, “Author” and “Subject” and edges reflecting
“Paper-Author” and “Paper-Subject” relations. The classifi-
cation task is to predict the venue of each paper. We use the
original version of ACM provided in [40].

o IMDB [40]. This is a movie network consisting of nodes of
types “Movie”, “Actor” and “Director” and edges reflecting
“Movie-Actor” and “Movie-Director” relations. The classi-
fication task is to predict the genre of each movie. We use
the original version of IMDB provided in [40].

o DBLP [1]. This is also a publication network consisting of
nodes of types “Paper”, “Author”, “Conference” and “Term”
and edges reflecting “Paper-Author”, ‘“Paper-Conference”
and “Paper-Term” relations. We use it to conduct two
classification tasks. The first task is to predict the research

TABLE I
CHARACTERISTICS OF THE HETEROGENEOUS GRAPH DATASETS. THE NODE TYPE ENTROPY IS THE ENTROPY OF THE DISTRIBUTION OF NODE TYPES.
THE RELATION ENTROPY IS THE ENTROPY OF THE DISTRIBUTION OF RELATIONS. THE CLASS ENTROPY IS THE ENTROPY OF THE CLASS DISTRIBUTION
OF TARGET NODES.

Node type # Node

Relation Average Class

Dataset # Nodes # Edges # Node types entropy attributes # Relations entropy node degree # Classes entropy Noised Domain
ACM 8,994 12,961 3 0.97 1,902 2 0.78 1.44 3 1.58 No Citation network
IMDB 12,772 18,644 3 1.49 1,256 2 0.81 1.45 3 1.47 No Movie network
DBLP-Paper 26,128 119,783 4 1.42 334 3 1.14 4.58 4 0.85 No Publication network
DBLP-Author 26,128 119,783 4 1.42 334 3 1.14 4.58 4 0.69 No Publication network
Freebase 12,164,758 31,491,283 8 2.19 n/a 18 2.63 2.59 8 0.16 No General knowledge
Freebase-Noise 12,164,758 31,491,283 8 2.19 n/a 18 2.63 2.59 8 0.16 Yes General knowledge

area of each author, where the label of each author is
provided in [1]. The second task is to predict the research
area of each paper, where the label of each paper is obtained
by classifying the title of the paper into four research areas.
We refer to the datasets corresponding to the first and second
tasks as DBLP-Author and DBLP-Paper, respectively.

o Freebase [40]. This is a large-scale knowledge graph ex-
tracted from the Internet. It consists of nodes of 8 types
and edges reflect 18 relations. The classification task is to
predict the genre of each node of type “Book”. In addition
to using the original version of Freebase provided in [40],
we construct a noisy version of it as follows. For the
bipartite graph corresponding to each relation of Freebase,
we first randomly delete 10% of existing edges and then
randomly add the same number of non-existing edges to the
bipartite graph. We refer to the noisy version of Freebase
as Freebase-Noise.

Each dataset is split into a training set, a validation set and
a testing set. The training set is used to train victim HGNNs
and parametric models of model-based attack methods. The
validation set is used for hyperparameter tuning. The testing
set is used to evaluate the performance of different attack
methods. For DBLP-Paper, we use 800/400/13,128 nodes for
training/validation/testing; for Freebase and Freebase-Noise,
we use 1,200/400/8,967 nodes for training/validation/testing.
For the other datasets, we use their default splitting ratios [1],
[40].

Each dataset has a set of meta-paths, which are required for
meta-path-based HGNNs such as HAN [1]. For DBLP-Paper,
we adopt the meta-paths {APA, APCPA, APTAP}, where A,
P, C, T denote “Author”, “Paper”, “Conference” and “Term”,
respectively. For the other datasets, we adopt the meta-paths
from their original implementations [1], [40].

Baselines. We compare the proposed GHAttack with both
optimization-based methods including FGSM [12], HGAt-
tack [13] and HSA [14], and model-based methods including
GUA [20], CD-ATTACK [23], RL-S2V [24] and PR [21].
These model-based methods are designed to attack classic
graph neural networks on homogeneous graphs and thus
cannot handle graph heterogeneity. Hence, we apply them
to attack HGNNs by training one model on each relation
of a heterogeneous graph, such that each model focuses on
perturbing edges on the corresponding relation. To report the
final performance on the testing set, we use the best model
that achieves the highest attack effectiveness on the validation
set.

Our methods. In addition to the proposed GHAttack, we
develop a variant of it that cannot leverage graph heterogeneity.
Specifically, similar to the model-based baseline methods, we
train one generator on each relation of a heterogeneous graph,
perturbing only the edges on that relation, and report the final
performance on the testing set using the generator that achieves
the highest attack effectiveness on the validation set. We refer
to this degenerated version of GHAttack as GHAfttack-D.

Evaluation metrics. We measure the attack effectiveness of
a method against a victim HGNN by the Micro-F1 [12] of the
victim HGNN achieved on the testing set. The value of Micro-
F1 ranges from O to 1, where a smaller value indicates worse
predictive performance of the victim HGNN and thus implies
better attack effectiveness of that method. We report Micro-
F1 in percentage by default. We measure the attack efficiency
of a method by attack time (AT), which is the total time
cost of generating the perturbed heterogeneous graphs for all
target nodes in the testing set. A lower AT implies better attack
efficiency. We report AT in minutes by default.

Implementation details. Here, we introduce the implemen-
tation details of the baseline methods and our methods.

For the compared optimization-based methods, we use the
source code of FGSM and we implement HGAttack and HSA
to achieve performance comparable to that reported in their
respective papers. For the compared model-based methods,
we use the source code of GUA, CD-ATTACK and RL-S2V,
and we implement PR to achieve performance comparable to
that reported in [21]. Since these model-based methods use
different settings, we unify them as follows for the fairness of
comparison. For GUA, we choose a number of £ anchor nodes
that correspond to the top-£ most effective nodes learned by
GUA, in order to use the same budget & as the other methods.
For CD-ATTACK, we replace the hiding loss in [23] by the
loss function defined in (8), so that it can launch attacks for
the node classification task. For RL-S2V, we adopt the PBA-C
attack setting in [24], as the class probabilities predicted by
the victim HGNNSs are accessible in our experimental settings.
For PR, we repurpose it to attack the victim HGNNs in the
node classification task following the same way as in [24]. In
addition, HGAttack, HSA and CD-ATTACK only assume the
gray-box setting and conduct transfer attacks. In the white-
box setting, since the victim HGNNs are accessible, we use
HGAttack, HSA and CD-ATTACK to attack them directly
instead of attacking a surrogate HGNN.

For our methods, we adopt the backbone of HGT [8] as the
HGNN backbone h,, of the generator gg by default and set

TABLE III
MICRO-F1 (%) OF ALL THE METHODS WHEN THE BUDGET £ = 5. A LOWER MICRO-F1 MEANS HIGHER ATTACK EFFECTIVENESS. BOLD NUMBERS
INDICATE THE LOWEST MICRO-F1 WHEN ATTACKING EACH VICTIM HGNN ON EACH DATASET.

Dataset ‘ Attack method RGCN HGT SimpleHGN HAN HAN-RoHe GTN HetSANN MHNF AGAT HAGNN Mean Micro-F1
\ No attack 92.05 90.54 91.72 89.98 88.53 91.11 92.00 90.40 90.24 91.64 90.82
FGSM 41.53 73.50 55.25 51.56 87.20 74.44 39.78 39.82 33.68 39.32 53.60
HGAttack 33.96 53.72 9.68 17.42 83.36 65.73 24.72 19.26 27.34 35.07 37.03
ACM HSA 3242 55.29 12.05 20.13 84.93 61.20 26.17 18.23 26.39 37.44 37.37
GUA 40.42 65.05 34.69 33.41 85.98 65.22 41.29 37.40 36.29 55.28 49.50
CD-ATTACK 35.92 58.37 23.81 25.75 83.64 62.32 36.38 33.60 30.45 42.42 43.26
RL-S2V 43.29 72.38 43.79 47.22 87.27 64.50 42.76 41.60 43.58 68.20 55.46
PR 33.45 55.83 26.34 28.06 83.53 59.82 37.28 36.05 27.52 40.44 42.83
GHAttack-D (Our) 36.20 56.84 21.56 22.10 84.73 62.92 32.20 28.19 32.30 39.32 41.64
GHAttack (Our) 3190 50.32 17.72 18.10 82.62 57.24 25.78 20.12 23.40 33.50 36.07
\ No attack 60.09 61.39 61.99 59.77 53.64 60.20 59.94 61.22 59.40 61.26 59.89
FGSM 14.35 19.50 33.37 24.75 41.90 31.83 17.53 51.90 26.06 31.83 29.30
HGAttack 11.86 9.80 7.03 8.42 37.58 17.95 11.48 18.66 13.86 17.51 15.42
IMDB HSA 13.25 10.82 8.93 11.31 35.29 19.01 12.45 17.23 15.57 18.04 16.19
GUA 16.09 19.97 25.80 14.55 39.29 26.06 18.77 40.70 30.58 33.05 26.49
CD-ATTACK 15.47 9.42 14.98 11.43 36.06 25.27 17.29 42.66 23.70 27.24 22.35
RL-S2V 20.75 25.10 31.68 23.13 42.30 33.22 19.41 53.77 37.44 39.72 32.65
PR 16.23 14.57 17.29 13.04 35.90 25.83 16.15 44.30 22.58 25.73 23.16
GHAttack-D (Our) 15.20 10.52 14.50 12.79 35.82 24.42 15.20 39.30 20.38 28.52 21.67
GHAttack (Our) 11.84 7.02 8.46 9.69 33.75 15.44 10.64 21.05 13.26 18.40 14.96
\ No attack 74.32 74.41 75.69 71.53 70.41 73.90 73.86 74.14 72.02 73.58 73.37
FGSM 17.30 36.90 33.62 18.25 69.02 30.50 29.38 37.22 19.33 25.40 31.69
HGAttack 7.82 17.60 13.49 8.75 62.28 17.47 15.30 17.72 9.47 12.45 18.24
DBLP-Paper HSA 6.56 14.86 14.24 8.92 64.05 19.97 14.11 19.05 11.22 11.92 18.49
GUA 20.19 30.35 28.05 19.20 68.04 30.42 34.93 32.80 23.47 30.82 31.83
CD-ATTACK 16.58 23.84 16.50 13.85 67.29 25.06 21.36 27.30 17.72 20.42 24.99
RL-S2V 23.47 30.52 32.68 21.64 68.93 31.40 38.37 35.39 28.20 34.90 34.55
PR 14.73 22.26 18.90 16.04 66.73 24.28 35.93 24.30 20.14 24.51 26.78
GHAttack-D (Our) 14.92 22.04 15.85 10.24 68.80 25.50 19.80 23.25 20.39 18.79 23.96
GHAttack (Our) 6.85 9.46 11.80 6.32 64.95 15.16 11.05 13.47 7.22 11.68 15.80
\ No attack 90.45 91.18 93.84 89.78 90.58 90.80 92.27 91.71 88.56 90.34 90.95
FGSM 29.90 39.20 38.57 20.52 88.29 41.58 36.32 30.52 17.92 31.94 37.48
HGAttack 9.24 22.80 16.22 8.44 82.78 23.30 19.94 21.05 14.18 20.61 23.86
DBLP-Author HSA 11.72 18.55 16.89 11.25 81.29 21.80 21.45 20.64 15.39 21.20 24.02
GUA 13.23 20.07 32.54 21.93 85.08 30.29 23.10 21.36 19.27 28.37 29.52
CD-ATTACK 12.20 20.85 23.81 15.05 81.36 16.18 18.05 19.97 14.26 23.53 24.53
RL-S2V 26.27 34.75 40.68 24.61 87.88 38.39 39.41 28.32 23.85 35.60 37.98
PR 13.60 18.58 26.09 17.73 82.37 21.79 20.94 18.60 15.07 24.90 25.97
GHAttack-D (Our) 13.69 17.05 22.10 13.19 81.16 15.35 16.03 16.73 13.60 23.55 23.25
GHAttack (Our) 12.20 16.94 21.62 12.82 80.35 15.20 14.07 15.45 12.67 21.38 22.27
\ No attack 69.04 73.53 71.49 68.90 67.25 72.95 69.20 70.20 68.22 70.52 70.13
FGSM n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
HGAttack 22.40 24.05 16.19 24.70 57.82 27.50 22.03 25.75 23.69 2422 26.84
Freebase HSA n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
GUA n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
CD-ATTACK 4530 43.69 42.06 47.24 58.63 44.30 46.38 48.57 43.58 51.20 47.10
RL-S2V n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
PR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
GHAttack-D (Our) 27.44 30.08 27.30 32.64 61.75 32.94 26.33 33.43 31.24 30.73 33.99
GHAttack (Our) 19.29 2340 17.37 25.44 52.05 22.29 18.57 24.72 20.21 22.83 24.62
\ No attack 75.26 73.60 73.53 74.57 75.63 74.29 71.52 73.50 74.25 72.36 73.88
FGSM n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
HGAttack 21.37 22.28 15.62 23.90 54.37 25.66 21.24 22.73 20.43 22.70 25.03
Freebase-Noise HSA n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
GUA n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
CD-ATTACK 42.28 39.19 40.38 44.20 55.23 42.05 43.74 45.60 43.04 48.25 44.40
RL-S2V n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
PR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
GHAttack-D (Our) 26.28 28.35 24.87 29.41 59.20 31.04 23.76 31.82 29.20 29.77 31.37
GHAttack (Our) 17.55 22.04 16.50 23.74 50.82 21.38 16.33 21.29 18.85 21.63 23.01

the embedding dimension H in (4) to 256. We adopt another
HGT as the link predictor fp; used in Algorithm 2. On each
dataset, fj; is trained to perform link prediction task following
the implementation in [31] and we set the threshold § = 0.8

by default. We use 400 training epochs for IMDB and 200 for
the other datasets. For the hyperparameters ¢ and § used in
the proposed two strategies, we set ¢ = dia(G) and 5 = 1 on
ACM, IMDB, DBLP-Paper and DBLP-Author, where dia(G)

denotes the diameter of the heterogeneous graph G; and we
set ¢ = 2 and 8 = 0.1 on Freebase and Freebase-Noise. In
all experiments, we set the « of the loss function in (8) to 5,
use a batch size of 32 and set the learning rate of the ADAM
optimizer to 10~3. For all the compared methods, we use the
same budget £ = 5 if not otherwise specified. GHAttack is
implemented using Pytorch version 1.12.1, DGL version 0.9.1
with CUDA version 11.3. All experiments are conducted on a
server with an NVIDIA RTX 3090 GPU, 64GB main memory
and an Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz.

B. Attack Effectiveness in the White-box Setting (Q1)

Table III compares the attack effectiveness of our methods
with the baseline methods in the white-box setting, where the
results of the optimization-based methods and the model-based
methods are grouped separately. As reference, we also show
the Micro-F1 when the victim HGNNSs are not under attack,
and report the mean Micro-F1 of each method in attacking
all the victim HGNNs. On Freebase and Freebase-Noise, we
cannot report the results of FGSM, HSA, GUA, RL-S2V and
PR because they require too much memory to run on these
large-scale graphs, which causes out-of-memory issues. From
the results, we have the following observations.

GHAttack outperforms the compared model-based methods
by a large margin. Compared with the second-best model-
based method GHAttack-D, GHAttack achieves an average
improvement of 22.8% in achieving lower Micro-F1. This
success can be mainly attributed to the ability of GHAttack to
perturb edges on heterogeneous relations, whereas the other
model-based methods can only perturb edges on a single
one. However, such advantage is relatively less significant
on DBLP-Author. This is because, on DBLP-Author, there
is only one relation “Paper-Author” associated with the nodes
of type “Author” that need to be classified. Hence, perturbing
edges on the other relations offers limited improvement in
attack effectiveness, thus restraining the potential of GHAttack
to exploit graph heterogeneity. We will further discuss this
phenomenon in Appendix A.

The performance differences between the other model-based
methods exhibit a similar trend across different datasets and
victim HGNNs. CD-ATTACK, PR and GHAttack-D achieve
comparable results in most cases, as they all train a model
on a single relation to produce perturbations. However, on
Freebase and Freebase-Noise, GHAttack-D performs much
better than CD-ATTACK. This is because, in order to run on
large-scale graphs, CD-ATTACK is restricted to only deleting
edges [23], whereas GHAttack-D allows both edge addition
and deletion. This offers greater potential for GHAttack-D
to find more effective edges to perturb. GUA has inferior
performance to CD-ATTACK, PR and GHAttack-D because
its attack scheme, which alters connections between target
nodes and a fixed set of anchor nodes, is limited in attack
flexibility and thus reduces its effectiveness. RL-S2V performs
the worst among all the model-based methods, as it employs
a reinforcement learning approach that does not effectively
leverage the gradient information of the victim HGNNS.

GHAttack achieves comparable performance to the best
optimization-based method. As shown in Table III, in most

cases, GHAttack achieves close or even lower Micro-F1 when
compared with the best optimization-based method HGAt-
tack. Moreover, as shown by the reported mean Micro-FI,
GHAttack consistently outperforms FGSM, HGAttack and
HSA. This indicates the good generalization ability of the
generator gy used in GHAttack, which can produce effective
perturbations for new target nodes. In comparison, FGSM is
inferior to HGAttack and HSA, as it uses a simple approach
to optimize perturbations in pursuit of high speed rather than
high effectiveness.

C. Attack Effectiveness in the Gray-box Setting (Q2)

To evaluate the attack effectiveness of different methods in
the gray-box setting, we conduct transfer attacks on the victim
HGNN:Ss. Specifically, for each optimization-based method, it
first optimizes perturbations to attack a surrogate HGNN fg,
and then uses the optimized perturbations to attack a victim
HGNN f. For each model-based method, it first trains a model
to attack the surrogate HGNN fg and then uses the trained
model to generate perturbations to attack the victim HGNN
f. Denoted by Micro-F1y, ; the Micro-F1 of f achieved on
the testing set by conducting the above transfer attacks and by
F the set of ten victim HGNNs used in our experiments, we
measure the transfer attack effectiveness of a method when
using a surrogate HGNN fg € F by

Transy, = é Z Micro-Fly ¢, (13)
JEF\fs

which is the average of Micro-F1;, s when using the pertur-
bations generated for fg to attack each of the other nine victim
HGNNSs. A smaller Trans ¢, means better transfer attack effec-
tiveness. In particular, HGAttack and HSA specifically design
a surrogate model for launching transfer attacks, rather than
adopting an existing HGNN [13], [14]. Hence, we conduct
another set of experiments for HGAttack and HSA, where
we consistently use their specially designed surrogate model
instead of an HGNN in F as fg, but we still measure the
transfer attack effectiveness by (13). We refer to these methods
as HGAttack-S and HSA-S, respectively. Table IV compares
the transfer attack effectiveness of different methods. Due to
the out-of-memory issues, we cannot report the results of
FGSM, HSA, HSA-S, GUA, RL-S2V and PR on Freebase
and Freebase-Noise. We have the following findings.
GHAttack achieves better attack transferability than the
other model-based methods. Compared with the second-best
model-based method GHAttack-D, GHAttack obtains an av-
erage improvement of 21.4% in achieving lower Transg,.
This suggests that in the transfer attacks, edges perturbed on
different relations are more effective than edges perturbed on
a single relation. We believe that this is because edges on a
relation that have a large effect on the surrogate HGNN fg
may have a small effect on the victim HGNN f, as f may rely
primarily on messages passed on the other relations to make
predictions. Hence, the ability of GHAttack to perturb edges
on heterogeneous relations grants it superior transfer attack
effectiveness. In addition, we observe a similar phenomenon
as in Table III, where the advantage of GHAttack is relatively

TABLE IV
TRANS g (%) OF ALL THE METHODS WHEN THE BUDGET § = 5. A LOWER TRANS s, MEANS HIGHER TRANSFER ATTACK EFFECTIVENESS. BOLD
NUMBERS INDICATE THE LOWEST TRANS s, WHEN USING EACH HGNN AS THE SURROGATE HGNN TO ATTACK THE OTHER HGNNs.

Dataset \ Attack method RGCN HGT SimpleHGN HAN HAN-RoHe GTN HetSANN MHNF AGAT HAGNN Mean Transyg
FGSM 71.26 64.30 69.25 70.84 78.68 63.75 68.60 70.05 64.29 65.07 68.56
HGAttack 52.94 47.51 41.25 49.78 73.11 50.30 47.40 48.36 50.66 51.86 51.32
HGAttack-S 48.50 43.62 44.04 46.08 70.30 44.85 50.14 43.94 49.82 48.33 48.96
ACM HSA 54.62 49.03 42.89 47.20 71.19 48.52 50.22 49.76 53.59 53.20 52.02
HSA-S 53.20 44.79 46.37 46.79 72.64 43.20 51.96 47.64 52.85 51.36 52.78
GUA 64.53 59.90 59.70 63.95 81.15 60.38 72.51 64.47 62.44 67.36 65.64
CD-ATTACK 60.96 54.60 57.80 62.50 77.05 63.77 68.42 55.05 57.50 62.74 62.04
RL-S2V 68.32 65.49 70.48 74.51 80.23 72.58 66.46 64.56 69.29 71.11 70.30
PR 62.55 53.80 55.26 63.15 78.54 61.30 70.38 59.72 58.37 64.91 62.80
GHAttack-D (Our) 57.25 55.31 52.65 60.60 75.84 53.45 54.72 51.22 59.42 60.05 58.05
GHAttack (Our) 45.04 48.45 43.64 43.04 67.02 40.63 48.30 46.32 46.20 51.47 48.01
FGSM 36.61 32.40 39.75 41.82 40.08 33.95 34.31 36.48 34.75 33.40 36.36
HGAttack 26.78 25.45 21.48 29.23 38.59 23.21 25.64 20.20 21.50 26.93 25.90
HGAttack-S 21.40 24.30 13.28 20.12 35.58 25.36 22.04 23.85 22.76 25.88 23.46
IMDB HSA 28.25 23.92 23.40 28.04 37.93 24.59 22.80 19.85 24.03 27.86 26.07
HSA-S 26.28 23.33 23.90 23.74 39.05 23.97 25.28 21.83 19.86 27.12 25.43
GUA 32.66 29.34 34.37 36.24 39.40 28.06 30.78 33.86 32.44 36.24 33.34
CD-ATTACK 26.52 31.27 28.76 34.13 38.75 32.49 27.66 30.15 24.83 32.29 30.69
RL-S2V 34.49 37.05 40.56 38.23 40.72 33.01 36.25 36.80 33.29 37.23 36.76
PR 29.60 25.79 29.33 32.94 38.23 30.51 24.23 31.94 28.03 31.86 30.25
GHAttack-D (Our) 25.33 32.74 25.05 35.20 38.75 30.85 24.35 29.13 26.07 33.68 30.12
GHAttack (Our) 18.94 16.04 17.32 24.20 33.80 21.40 19.92 23.05 17.22 24.29 21.62
FGSM 39.64 36.60 41.17 43.48 55.85 33.44 38.32 40.89 33.51 39.87 40.28
HGAttack 27.78 20.93 23.87 26.13 50.33 26.97 23.84 2243 22.30 24.90 26.95
HGAttack-S 29.30 25.52 21.90 28.44 52.57 22.53 25.80 18.53 19.75 22.46 26.68
DBLP-Paper HSA 30.94 21.15 25.21 25.03 53.69 25.04 28.80 25.37 20.11 23.72 27.90
HSA-S 32.47 22.60 24.33 26.19 52.08 27.94 32.39 23.04 24.72 25.80 29.16
GUA 36.76 34.53 39.48 37.78 53.50 40.80 35.13 33.76 36.29 38.22 38.63
CD-ATTACK 27.78 28.60 33.17 36.60 54.90 34.05 38.55 35.34 31.58 29.68 35.03
RL-S2V 42.23 37.38 35.20 40.62 55.33 37.92 34.45 40.90 38.20 41.69 40.39
PR 31.66 32.08 33.62 41.75 56.20 38.01 35.90 39.22 34.29 35.83 37.86
GHAttack-D (Our) 30.52 26.72 30.43 33.92 55.24 31.39 33.05 37.48 28.60 30.05 33.74
GHAttack (Our) 19.70 15.56 17.75 25.08 48.83 21.62 23.24 18.10 16.26 19.47 22.56
FGSM 40.14 43.22 41.47 47.08 75.80 44.28 44.11 40.52 35.03 41.46 45.31
HGAttack 34.04 26.52 33.38 32.68 68.35 26.39 35.48 33.63 31.11 34.68 35.63
HGAttack-S 29.75 25.35 29.23 30.38 70.33 28.88 31.84 25.40 28.20 30.46 32.98
DBLP-Author HSA 37.79 27.20 32.59 33.80 70.47 29.80 34.65 3291 34.22 35.20 36.86
HSA-S 39.50 30.04 31.84 3422 69.94 32.05 37.63 34.04 33.29 37.77 38.03
GUA 34.77 33.02 37.20 39.40 74.45 32.80 36.23 40.68 33.67 35.03 39.73
CD-ATTACK 29.11 24.94 31.44 33.03 75.28 35.12 27.39 32.60 26.25 31.20 34.64
RL-S2V 43.67 45.92 43.51 49.25 76.45 45.90 40.57 48.36 41.49 45.90 48.10
PR 31.66 27.04 32.69 32.15 73.20 38.85 28.39 34.27 28.12 32.62 35.90
GHAttack-D (Our) 31.25 27.13 33.03 34.59 73.50 37.04 33.69 30.20 28.69 29.24 35.84
GHAttack (Our) 28.02 24.35 31.68 29.68 68.05 24.82 31.24 29.95 24.45 28.94 32.12
FGSM n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
HGAttack 36.28 35.40 36.16 39.66 61.93 37.50 43.04 38.63 39.30 37.36 40.53
HGAttack-S 33.73 36.90 35.58 39.85 59.28 40.33 41.20 35.72 36.84 35.24 39.47
Frecbase HSA n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
HSA-S n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
GUA n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
CD-ATTACK 54.13 51.20 53.58 59.33 64.75 52.80 56.22 58.90 55.38 57.95 56.42
RL-S2V n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
PR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
GHAttack-D (Our) 45.73 39.30 48.25 42.73 63.04 43.90 48.26 44.06 44.57 48.39 46.82
GHAttack (Our) 36.22 33.80 32.94 38.06 60.35 36.44 37.32 33.26 35.20 36.09 37.97
FGSM n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
HGAttack 34.63 33.04 35.73 38.60 59.25 35.07 41.82 35.40 38.22 35.29 38.71
HGAttack-S 32.52 33.29 34.20 37.45 58.93 39.20 38.37 33.70 34.90 32.71 38.75
Freebase-Noise HSA n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
HSA-S n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
GUA n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
CD-ATTACK 52.72 48.50 51.82 58.55 63.30 48.96 53.04 53.73 54.40 55.82 54.08
RL-S2V n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
PR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
GHAttack-D (Our) 43.58 38.12 48.02 41.38 61.69 40.50 47.24 41.52 41.65 46.20 44.99
GHAttack (Our) 33.84 29.50 32.27 38.44 57.27 33.03 35.42 32.10 33.58 33.23 35.87

less significant on DBLP-Author. We will discuss this in depth in Appendix A.

TABLE V
MEAN MICRO-F1 (%) OF ALL THE METHODS AGAINST DIFFERENT DEFENSES WHEN THE BUDGET £ = 5. A LOWER MEAN MICRO-F1 MEANS HIGHER
ATTACK EFFECTIVENESS AGAINST THE DEFENSE. BOLD NUMBERS INDICATE THE LOWEST MEAN MICRO-F1 AGAINST EACH DEFENSE ON EACH DATASET.

Dataset | Defense | FGSM HGAttack HSA | GUA CD-ATTACK RL-S2V PR GHAttack-D (Our) GHAttack (Our)

No defense 53.60 37.03 37.37 | 49.50 43.26 55.46 42.83 41.64 36.07
ACM Jaccard 70.65 55.39 59.70 | 70.65 57.20 68.50 55.56 56.68 54.22
First-order proximity 75.22 63.24 65.08 | 77.27 66.63 71.24 63.70 65.15 61.40
Second-order proximity | 78.74 64.58 64.96 | 78.14 71.24 74.30 68.51 69.40 63.47
No defense 29.30 15.42 16.19 | 26.49 22.35 32.65 23.16 21.67 14.96
IMDB Jaccard 37.52 30.23 31.77 | 39.70 36.56 39.68 37.60 35.25 29.20
First-order proximity 43.27 37.05 40.32 | 44.85 42.28 43.27 41.94 40.12 35.42
Second-order proximity | 45.90 37.82 39.47 | 4741 42.92 46.20 45.82 43.25 36.93
No defense 31.69 18.24 18.49 | 31.83 24.99 34.55 26.78 23.96 15.80
DBLP-P. Jaccard 47.35 41.50 40.69 | 50.24 44.47 48.45 43.55 43.65 39.25
-raper First-order proximity | 48.36 43.24 4458 | 53.82 49.20 5128 47.13 46.32 42.83
Second-order proximity | 51.94 45.93 48.31 | 56.20 50.73 52.70 49.84 48.13 45.20
No defense 37.48 23.86 24.02 | 29.52 24.53 37.98 25.97 23.25 22.27
DBLP-Author Jaccard 60.42 46.52 47.96 | 54.82 50.32 56.40 49.73 48.68 47.24
First-order proximity 63.75 50.44 54.62 | 58.75 52.69 58.52 55.07 50.70 48.30
Second-order proximity | 64.94 53.05 54.70 | 59.06 55.04 59.66 56.41 52.25 51.37
No defense n/a 26.84 n/a n/a 47.10 n/a n/a 33.99 24.62

Freebase Jaccard n/a n/a n/a n/a n/a n/a n/a n/a n/a
First-order proximity n/a 53.29 n/a n/a 59.22 n/a n/a 55.05 49.50
Second-order proximity n/a 54.45 n/a n/a 60.47 n/a n/a 57.82 52.24
No defense n/a 25.03 n/a n/a 44.40 n/a n/a 31.37 23.01

Freebase-Noise Jaccard n/a n/a n/a n/a n/a n/a n/a n/a n/a
First-order proximity n/a 50.28 n/a n/a 58.05 n/a n/a 54.30 44.68
Second-order proximity n/a 52.47 n/a n/a 61.54 n/a n/a 58.16 46.24

GHAttack outperforms the optimization-based methods in
the transfer attacks. As shown in Table IV, GHAttack achieves
lower Transy than that of the optimization-based methods in
most cases and consistently obtains the lowest mean Trans ¢
on different datasets. Such results indicate the better transfer-
ability of the perturbations produced by the generator gy of
GHAttack. One possible reason is that since each perturbation
generated by the optimization-based methods is specifically
optimized to attack the surrogate HGNN fg for a single target
node, it may easily overfit to fs and thus fail to attack other
victim HGNNS. In contrast, the generator gy is trained to attack
fs for all the target nodes in the training set, which reduces
the risk of overfitting each generated perturbation to fg.

D. Attack Effectiveness Against Defense (Q3)

In this subsection, we investigate the attack effectiveness of
the compared methods against different defenses. Since there
are no defenses specially designed to resist evasion adversarial
attack against HGNNs on heterogeneous graphs, we extend
three defense methods [16], [41] on homogeneous graphs such
that they can detect target nodes suspected to be attacked in
heterogeneous graphs. The three defenses and the method to
extend them are described as follows.

Jaccard [16] computes the similarity scores of node features
between a target node v and its neighboring nodes, and
considers v as attacked if the similarity score with one of
the neighbors is below a threshold. First-order proximity [41]
measures information discrepancy between v and its neighbors
by computing the mean of the KL divergences between the
classification probabilities of v and those of its neighbors;
and Second-order proximity [41] computes the mean of the
KL divergences between the classification probabilities of

pairs of neighbors. Both of them consider v as attacked if
the mean of the KL divergences is above a threshold. In a
heterogeneous graph, since a target node v and its neighbors
may be of different types, it is not always feasible to compute
the similarity score in Jaccard and the KL divergence in
First-order proximity and Second-order proximity. Hence, we
extend these defense methods by redefining the neighbors of
v as the set of nodes that are of the same type as v and have
the shortest path from it. The thresholds used in the extended
defense methods are tuned on the validation set to achieve
the highest detection accuracy while having a false alarm rate
below 1073,

Table V compares the attack effectiveness of different
methods against the above defense methods, where we adopt
the experimental settings in Section VI-B and report the mean
Micro-F1 that is computed in the same way as in Table III.
Due to the out-of-memory issues, we cannot report the results
of FGSM, HSA, GUA, RL-S2V and PR on Freebase and
Freebase-Noise. In addition, since Freebase and Freebase-
Noise do not provide node features, we cannot report the
results of Jaccard on these datasets. We can see that, compared
with when no defenses are in place, the mean Micro-F1 of all
the methods increases when a defense is applied, indicating
that the extended defense methods are effective to some extent
against adversarial attacks on HGNNs. Nevertheless, GHAt-
tack still outperforms the other model-based methods and
achieves comparable effectiveness to the best optimization-
based method HGAttack. Moreover, the lowest mean Micro-F1
is achieved by GHAttack in most of the cases. Such superior
performance of GHAttack is because, although its attack
effectiveness is reduced by the defenses, the key mechanism of
GHAttack that exploits graph heterogeneity to perturb edges

TABLE VI
MEAN AT (MINUTES) OF ALL THE METHODS IN THE WHITE-BOX AND THE GRAY-BOX SETTINGS WHEN THE BUDGET { = 5. A LOWER MEAN AT MEANS
HIGHER ATTACK EFFICIENCY.

Dataset | Attack setting | FGSM ~ HGAwack HGAttack-S ~ HSA HSA-S | GUA CD-ATTACK RL-S2V PR GHAttack-D (Our) ~ GHAttack (Our)
ACM White-box 31.02 347.22 n/a 45.62 0.04 0.65 2.05 0.60 0.51 0.68
Gray-box 31.92 381.74 346.27 46.14 42 75 0.04 0.64 2.08 0.60 0.52 0.69
IMDB White-box 37.69 379.23 n/a 55.05 n/a 0.04 1.07 339 0.96 0.67 1.02
Gray-box 40.23 412.05 388.20 5484 5216 | 0.04 1.12 347 0.97 0.68 1.05
DBLP.P: White-box | 21542 2796.63 n/a 323.37 0.24 2771 99.68 24.69 18.23 27.54
aper Gray-box 22030 2839.23 2732.82 326.08 304 62 0.25 28.23 102.74 2420 18.64 27.72
DBLP-Author White-box 50.05 586.25 /a 76.20 /a 0.05 6.08 2118 536 1.54 6.10
u Gray-box 51.72 602.42 573.95 7693 7133 | 0.05 6.19 2150 5.17 1.60 6.26
Frecbase ‘White-box n/a 3132.74 n/a n/a n/a n/a 22.49 n/a n/a 50.64 82.47
; Gray-box n/a 3177.20 3110.25 n/a n/a n/a 23.86 n/a n/a 50.93 84.02
Freebase-Nois White-box n/a 3143.38 n/a n/a /a n/a 272 n/a n/a 51.20 82.29
reebase-Notse Gray-box n/a 3182.62 3130.04 n/a n/a n/a 22.90 n/a n/a 50.72 83.96

across heterogeneous relations still works, thus ensuring its
superiority over the compared methods.

E. Attack Efficiency (Q4)

Here, we investigate the attack efficiency of all the methods.
In particular, we are interested in the time cost of launching
attacks during the inference phase. The model training required
by the model-based methods can be done offline, thus we
do not include this time cost in our evaluation. Table VI
reports the time cost of different methods when conducting
the previous experiments in Section VI-B (white-box) and
Section VI-C (gray-box), where the mean AT in the white-
box and the gray-box settings is computed in a similar way
as the mean Micro-F1 and the mean Transy, in Table III
and Table IV, respectively. Due to the out-of-memory issues,
we cannot report the results of FGSM, HSA, HSA-S, GUA,
RL-S2V and PR on Freebase and Freebase-Noise. From the
results, we have the following observations.

Model-based methods are much more time-efficient than
optimization-based methods. In all the experiments, the mean
AT of the model-based methods is significantly lower than
that of the optimization-based methods, which demonstrates
the advantage of model-based methods in launching fast and
massive attacks. In contrast, due to the necessity of solving a
time-consuming optimization problem for each target node, the
optimization-based methods cannot deliver efficient attacks.
For instance, HGAttack takes more than 40 hours to generate
perturbations for the 13,000 target nodes in DBLP-Paper.
FGSM, HSA and HSA-S are faster than HGAttack because of
their simple optimization approaches, but they are still slower
than the compared model-based methods.

GHAttack strikes a better balance between attack efficiency
and attack effectiveness than the other model-based methods.
In terms of attack speed, GUA is the fastest because of its
simple attack scheme that only requires flipping the edge
connections between a target node and a set of anchor nodes.
However, as discussed in Section VI-B, this overly simplified
attack scheme also limits the attack effectiveness of GUA.
In addition, the mean AT of GHAttack-D, CD-ATTACK and
PR is generally lower than that of GHAttack, as they only
need to predict whether to perturb the candidate edges on a

single relation, which are fewer in number than the candidate
edges selected in GHAttack. Nevertheless, their inability to
leverage graph heterogeneity makes them less effective than
GHAttack. RL-SV2 is less time-efficient than the other model-
based methods, as it requires performing ¢ forward passes
through the trained model to generate a perturbed graph.

VII. ETHICAL CONSIDERATION

The focus of this work is to reveal potential vulnerabilities
in HGNNs rather than to promote their exploitation. We
acknowledge the potential misuse of GHAttack and emphasize
its responsible application under ethical Al principles. Our
experiments are confined to publicly available datasets in
controlled academic settings, avoiding harm to real HGNN-
based systems. Moreover, the engineering efforts to attack real
HGNN-based systems are substantial. We make it harder by
not releasing our code publicly. We will, however, release
our code including pre-trained checkpoints upon carefully
considering each request. Researchers are urged to apply
these techniques only in controlled environments, adhering
to responsible disclosure protocols and ethical guidelines to
prevent any potential misuse.

VIII. CONCLUSION

In this work, we propose a novel generative attack method
called GHAttack for time-efficient and effective adversarial
attacks on heterogeneous graph neural networks (HGNNs).
The key idea of GHAttack is to train a perturbation generator
to attack each target node by swiftly producing a pertur-
bation via a forward pass. Meanwhile, GHAttack enables
perturbations to modify edges across different relations of
a heterogeneous graph, in order to deliver highly effective
attacks. To achieve this, we design a novel model architecture
for the generator, formulate its training as an optimization
problem and efficiently solve it by addressing a series of
technical challenges. We systematically evaluate the perfor-
mance of GHAttack by conducting extensive experiments,
where the results demonstrate the excellent attack efficiency
and effectiveness of our method. In future work, we will
explore the potential of GHAttack in attacking HGNNs in
other tasks, such as link prediction and recommendation. In

addition, we will be committed to developing more effective
defenses, such as building more robust HGNNs or designing
effective indicators for monitoring attacks, to defend against
GHAttack and other adversarial attacks.

[1]

2

—

[3

[t}

[4]

[5]

[6

=

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in The World Wide Web
Conference, 2019, pp. 2022-2032.

H. Hong, H. Guo, Y. Lin, X. Yang, Z. Li, and J. Ye, “An attention-
based graph neural network for heterogeneous structural learning,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 04, 2020, pp. 4132-4139.

J. Wei and X. Liao, “Dynamical threshold-based fractional anisotropic
diffusion for speckle noise removal,” IEEE Transactions on Image
Processing, vol. 34, pp. 2826-2839, 2025.

Z. Li, H. Liu, Z. Zhang, T. Liu, and N. N. Xiong, “Learning knowledge
graph embedding with heterogeneous relation attention networks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 33, no. 8,
pp. 3961-3973, 2021.

Q. Liu, C. Long, J. Zhang, M. Xu, and D. Tao, “Aspect-aware graph
attention network for heterogeneous information networks,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 35, no. 5, pp.
7259-7266, 2022.

G. Zhu, Z. Zhu, H. Chen, C. Yuan, and Y. Huang, “Hagnn: Hybrid ag-
gregation for heterogeneous graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, 2024.

Y. Sun, D. Zhu, H. Du, and Z. Tian, “Mhnf: Multi-hop heterogeneous
neighborhood information fusion graph representation learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 35, no. 7, pp.
7192-7205, 2022.

Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph trans-
former,” in Proceedings of The Web Conference, 2020, pp. 2704-2710.
C. Gao, Y. Zheng, N. Li, Y. Li, Y. Qin, J. Piao, Y. Quan, J. Chang, D. Jin,
X. He et al., “A survey of graph neural networks for recommender
systems: Challenges, methods, and directions,” ACM Transactions on
Recommender Systems, vol. 1, no. 1, pp. 1-51, 2023.

Q. Zhong, Y. Liu, X. Ao, B. Hu, J. Feng, J. Tang, and Q. He,
“Financial defaulter detection on online credit payment via multi-view
attributed heterogeneous information network,” in Proceedings of The
Web Conference, 2020, pp. 785-795.

B. Hu, Z. Zhang, C. Shi, J. Zhou, X. Li, and Y. Qi, “Cash-out
user detection based on attributed heterogeneous information network
with a hierarchical attention mechanism,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 946-953.
M. Zhang, X. Wang, M. Zhu, C. Shi, Z. Zhang, and J. Zhou, “Robust
heterogeneous graph neural networks against adversarial attacks,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 4, 2022, pp. 4363-4370.

H. Zhao, Z. Zeng, Y. Wang, D. Ye, and C. Miao, “Hgattack: Transferable
heterogeneous graph adversarial attack,” in 2024 IEEE International
Conference on Agents, 2024, pp. 100-105.

H. Li, J. Xu, L. Yin, Q. Wang, Y. Jiang, and J. Liu, “Metapath-
free adversarial attacks against heterogeneous graph neural networks,”
Information Sciences, vol. 713, p. 122143, 2025.

M. Salzmann et al., “Learning transferable adversarial perturbations,”
Advances in Neural Information Processing Systems, vol. 34, pp.
13950-13 962, 2021.

H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu,
“Adversarial examples on graph data: Deep insights into attack and
defense,” arXiv preprint arXiv:1903.01610, 2019.

B. Wang, B. Jiang, and C. Ding, “Fl-gnns: Robust network representation
via feature learning guided graph neural networks,” IEEE Transactions
on Network Science and Engineering, vol. 11, no. 1, pp. 750-760, 2023.
H. Chang, Y. Rong, T. Xu, W. Huang, H. Zhang, P. Cui, X. Wang,
W. Zhu, and J. Huang, “Adversarial attack framework on graph embed-
ding models with limited knowledge,” IEEE Transactions on Knowledge
and Data Engineering, vol. 35, no. 5, pp. 4499-4513, 2022.

Y. Zhu, Y. Lai, K. Zhao, X. Luo, M. Yuan, J. Wu, J. Ren, and K. Zhou,
“From bi-level to one-level: A framework for structural attacks to
graph anomaly detection,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 36, no. 4, pp. 6174-6187, 2024.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

(34]
[35]

[36]

(371

[38]

[39]

[40]

[41]

X. Zang, Y. Xie, J. Chen, and B. Yuan, “Graph universal adversarial
attacks: A few bad actors ruin graph learning models,” in Proceedings
of the International Joint Conference on Artificial Intelligence, 2021,
pp. 3328-3334.

H. Zhang, X. Yuan, C. Zhou, and S. Pan, “Projective ranking-based
gnn evasion attacks,” IEEE Transactions on Knowledge and Data
Engineering, vol. 35, no. 8, pp. 8402-8416, 2023.

J. Chen, D. Zhang, Z. Ming, K. Huang, W. Jiang, and C. Cui,
“Graphattacker: A general multi-task graph attack framework,” IEEE
Transactions on Network Science and Engineering, vol. 9, no. 2, pp.
577-595, 2021.

J. Li, H. Zhang, Z. Han, Y. Rong, H. Cheng, and J. Huang, “Adversarial
attack on community detection by hiding individuals,” in Proceedings
of The Web Conference, 2020, pp. 917-927.

H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Ad-
versarial attack on graph structured data,” in International Conference
on Machine Learning, 2018, pp. 1115-1124.

A. Liu, B. Li, T. Li, P. Zhou, and R. Wang, “An-gcn: an anonymous
graph convolutional network against edge-perturbing attacks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 35, no. 1,
pp. 88-102, 2022.

Y. Shang, Y. Zhang, J. Chen, D. Jin, and Y. Li, “Transferable structure-
based adversarial attack of heterogeneous graph neural network,” in
Proceedings of the ACM International Conference on Information and
Knowledge Management, 2023, pp. 2188-2197.

E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

J. Mu, B. Wang, Q. Li, K. Sun, M. Xu, and Z. Liu, “A hard label black-
box adversarial attack against graph neural networks,” in Proceedings
of the ACM SIGSAC Conference on Computer and Communications
Security, 2021, pp. 108-125.

X. Wang, H. Chang, B. Xie, T. Bian, S. Zhou, D. Wang, Z. Zhang,
and W. Zhu, “Revisiting adversarial attacks on graph neural networks
for graph classification,” IEEE Transactions on Knowledge and Data
Engineering, vol. 36, no. 5, pp. 2166-2178, 2023.

S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph transformer
networks,” Advances in Neural Information Processing Systems, vol. 32,
2019.

Q. Lv, M. Ding, Q. Liu, Y. Chen, W. Feng, S. He, C. Zhou, J. Jiang,
Y. Dong, and J. Tang, “Are we really making much progress? revisiting,
benchmarking and refining heterogeneous graph neural networks,” in
Proceedings of the ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2021, pp. 1150-1160.

M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in European Semantic Web Conference, 2018, pp. 593-607.
D. Ziigner, O. Borchert, A. Akbarnejad, and S. Giinnemann, “Adversarial
attacks on graph neural networks: Perturbations and their patterns,” ACM
Transactions on Knowledge Discovery from Data, vol. 14, no. 5, pp. 1-
31, 2020.

M. H. Kalos and P. A. Whitlock, Monte carlo methods, 2009.

C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution:
A continuous relaxation of discrete random variables,” arXiv preprint
arXiv:1611.00712, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE International Conference on Computer Vision,
2015, pp. 1026-1034.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” Advances in Neural Information Processing Systems, vol. 31,
2018.

J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad,
M. M. A. Patwary, Y. Yang, and Y. Zhou, “Deep learning scaling is
predictable, empirically,” arXiv preprint arXiv:1712.00409, 2017.

H. Han, T. Zhao, C. Yang, H. Zhang, Y. Liu, X. Wang, and C. Shi,
“Openhgnn: An open source toolkit for heterogeneous graph neural
network,” in Proceedings of the ACM International Conference on
Information and Knowledge Management, 2022, pp. 3993-3997.

Y. Zhang, S. Khan, and M. Coates, “Comparing and detecting adversarial
attacks for graph deep learning,” in Proceedings of Representation
Learning on Graphs and Manifolds Workshop, 2019.

	Introduction
	Related Works
	Preliminaries
	Heterogeneous Graph
	Heterogeneous Graph Neural Network

	Problem Definition
	Threat Model
	Problem Statement

	Generative Heterogeneous Attack
	Modeling Perturbation
	Designing Perturbation Generator
	Formulating the Training
	Solving the Optimization Problem
	Training Procedure
	Conducting Attacks
	Time Complexity Analysis

	Experiments
	Experimental Settings
	Attack Effectiveness in the White-box Setting (Q1)
	Attack Effectiveness in the Gray-box Setting (Q2)
	Attack Effectiveness Against Defense (Q3)
	Attack Efficiency (Q4)

	Ethical Consideration
	Conclusion
	References

