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Fast and Effective Overwrite Attack Against
DNN-based Image Watermarking Models
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Abstract—Deep neural network (DNN)-based image water-
marking models have been widely recognized as an effective way
to manage the huge amount of AI-generated images. However,
the vulnerability of such models to different forms of adversarial
attacks has been a critical concern. Among the existing forms of
attacks in the literature, image-dependent attacks cannot launch
real-time attacks on a large number of watermarked images,
because they need to train a new noise image to attack each new
watermarked image; image-regeneration attacks either require
a lot of information about the watermarking system or cause
too much damage to the attacked image. To fill the gap in the
existing forms of attacks, in this paper, we propose a novel form
of attack named “fast and effective overwrite attack (FEOA)”,
which achieves an extremely fast attack speed and strong attack
effectiveness. In particular, we discovered a single noise image,
when directly added to many watermarked images, can overwrite
their true watermark messages to different ones in milliseconds.
We also develop an adaptive version of FEOA, which trains
k different noise images and applies the principle of divide
and conquer to significantly improve attack effectiveness. Our
work opens the door to quickly launching massive overwrite
attacks on a large number of watermarked images, revealing a
new robustness issue of DNN-based image watermarking models.
Extensive experiments demonstrate the outstanding attack time
efficiency and effectiveness of our methods.

Index Terms—Image watermarking, deep neural networks,
overwrite attack.

I. INTRODUCTION

TO effectively manage the rapidly growing number of AI-
generated images, many deep neural network (DNN)-

based image watermarking models [1]–[16] have been devel-
oped to enable image attribution [14], [17], establish proof
of ownership [18]–[20], implement copy controls [21], and
achieve authentication purposes [22]. As these models become
widely deployed, it is increasingly important to assess their
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(a) Fast and effective overwrite attack (FEOA)
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(b) Adaptive fast and effective overwrite attack (AFEOA)
when k = 2

Fig. 1. The overview diagrams of FEOA and AFEOA. (a) FEOA overwrites
the message of each watermarked image by adding a noise image δ to it.
(b) AFEOA overwrites the message of each watermarked image by adding a
noise image that is chosen from a set of k noise images {δ1, . . . , δk} by the
selective neural network hβ .

robustness against adversarial attacks, which typically manip-
ulate watermarked images in a way that disrupts the watermark
extraction process or misleads the authentication mechanism.
Studying these attacks not only reveals inherent vulnerabilities
in DNN-based image watermarking models but also drives the
development of more resilient models, ultimately safeguarding
the integrity of AI-generated images.

Some recent research [23]–[27] has revealed the vulnera-
bility of DNN-based image watermarking models to different
forms of adversarial attacks. As discussed later in Section II,
image-dependent attacks [23], [25], [26], [28], [29] train a
unique noise image tailored for each watermarked image to
remove or overwrite its watermark. While often effective, these
methods require significant computational time per attack,
which prohibits them from launching real-time attacks on a
large amount of watermarked images. On the other hand,
image-regeneration attacks [24]–[27], [30], [31] remove the
watermark of a watermarked image by regenerating a visually
similar image without the watermark. These attacks are gen-
erally faster than image-dependent attacks. Nevertheless, they
either demand extensive prior knowledge about the watermark-
ing system [24], [30] or cause visible damage to the image
quality due to uncontrolled overly smoothing on watermarked
images [26], [27], [31].

To the best of our knowledge, how to launch fast and effec-
tive overwrite attacks against DNN-based image watermarking
models is a novel and challenging problem that has not been
systematically studied in the literature [23]–[27]. Bridging this



2

gap is critical not only to advance existing attacks but also
to establish more rigorous benchmarks for comprehensively
evaluating the robustness of DNN-based image watermarking
models against adversarial attacks.

In this paper, we fill this gap by proposing a novel attack
named fast and effective overwrite attack (FEOA), which
can effectively overwrite the watermark messages of many
watermarked images in milliseconds without damaging much
image quality. In particular, we demonstrated the existence of
a single noise image, when directly added to many different
watermarked images, can effectively overwrite their true wa-
termark messages. Since attacking a watermarked image only
requires adding this noise image to it, and the noise image
does not need to be re-trained or fine-tuned to attack new
watermarked images, our attack is extremely fast. Moreover,
the damage to the image quality of watermarked images can
be easily mitigated by reducing the L2-norm of the noise
image. We also extended FEOA to a more effective version
named adaptive FEOA (AFEOA), which trains k different
noise images and significantly improves attack effectiveness by
adaptively selecting the most effective noise image to launch
each attack. Fig. 1 illustrates the key ideas of FEOA and
AFEOA. Our contributions are listed as follows.
1) We propose a novel task of fast and effective overwrite

attack (FEOA) against DNN-based image watermarking
models, which aims to swiftly overwrite the watermark
messages of many watermarked images by adding the
same noise image to them. To validate the existence of
such a noise image, we formulate the task of FEOA as a
constrained optimization problem and solve it by projected
gradient descent to produce a single noise image that is
highly effective in overwriting watermark messages.

2) By applying the principle of divide and conquer, we
extend FEOA to adaptive FEOA (AFEOA) to significantly
improve attack effectiveness. AFEOA trains a set of k
different noise images and integrates a selective neural
network to choose the most effective noise image for each
attack. We formulate the task of AFEOA as a continuous
optimization problem and efficiently solve it by proposing
a new training method to train the k noise images and the
selective neural network simultaneously.

3) We conduct extensive experiments to compare the attack
performance of FEOA and AFEOA with eight baselines
when attacking seven state-of-the-art DNN-based image
watermarking models and one classic image watermarking
method. Experimental results demonstrate the superiority
of our novel attack methods over the baselines in achiev-
ing high attack time efficiency and high attack effective-
ness. Our source code is at https://github.com/ShaoxinLi/
Fast-and-Effective-Overwrite-Attack.

II. RELATED WORKS

To the best of our knowledge, how to launch fast and ef-
fective overwrite attacks against deep neural network (DNN)-
based image watermarking models [1], [2], [7]–[10], [12],
[14]–[16], [32]–[34] is a novel task that has not been sys-
tematically studied in the literature. It is broadly related to the
following existing attack methods.

The classic attacks, such as Gaussian noise [8], [17], [27],
Gaussian blur [1], [2], [7], [27] and JPEG [9], [27], [32], are
often adopted as benchmark methods to attack watermarked
images. These methods can launch fast attacks in real time
due to their simplicity. However, they do not pose a big threat
to modern DNN-based image watermarking models because
most of them are designed and empirically demonstrated to be
robust to classic attacks [8]–[10], [12].

The image-dependent attacks [23], [25], [26], [28], [29]
attack a watermarked image by adding a specifically trained
noise image to it. Such a noise image is often referred to as
a perturbation [23], [25], [26], thus making image-dependent
attacks also known as perturbation attacks. However, since
attacking each new watermarked image requires training a
new perturbation, and training each perturbation takes several
minutes in the worst case by solving a complex optimization
problem, these methods are not applicable for launching real-
time attacks and tend to be slow when attacking a large amount
of watermarked images. For example, WEvade [23] takes over
22 hours to attack 1,000 watermarked images. In comparison,
while our attack methods are also perturbation attacks since
they also add perturbations (i.e., noise images) to watermarked
images, they are extremely fast in attacking new watermarked
images. This is achieved by training the perturbations only
once in an offline manner and then directly applying them to
attack new watermarked images without any fine-tuning or re-
training. As shown by our experiments in Section VI-D, FEOA
and AFEOA cost less than 20 milliseconds and 3 seconds,
respectively, to attack 1,000 watermarked images.

The image-regeneration attacks [24]–[27], [30], [31] train
a generative model that takes a watermarked image as in-
put and generates an attacked image without a watermark.
Once trained, the generative model can be used to launch
fast attacks since each attack only needs a simple forward
pass of a watermarked image through the generative model.
Some image-regeneration attacks [24], [30] adopt a different
attack setting from ours, because [24] requires to know the
secret watermark messages of the watermarked images to be
attacked, and [30] requires access to the training dataset used
to train victim watermarking models. As discussed later in
Section III, our attack methods are working on a more practical
attack setting than [24], [30]. The other image-regeneration
attacks [25]–[27], [31] utilize a diffusion model [35], [36]
or a variational autoencoder [27], [31] to generate attacked
images. However, since these models cannot precisely control
the content of output image, they often overly smooth the
attacked image [26], [27], [31]. This produces a low peak
signal-to-noise ratio (PSNR) between the attacked image and
the original image, thus damaging the utility of the attacked
image. In summary, the proposed FEOA and AFEOA are novel
attack methods that are substantially different from the image-
regeneration attacks, because FEOA and AFEOA do not train
a generative model to generate attacked images.

In addition, a few recent attacks [37], [38] do not fall in
the above categories. [37] is specifically designed to target the
watermarking model of Stable Signature [14], and therefore,
this attack method cannot be directly applied to other DNN-
based image watermarking models. [38] extracts the water-
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mark pattern corresponding to a specific watermark message
and then uses it to conduct attacks. However, this watermark
pattern is only effective against images watermarked with the
same message and does not perform well when attacking
images watermarked with different messages.

III. THREAT MODEL

In this section, we first give a brief introduction to the
general encoder-decoder framework of DNN-based image
watermarking models. Then, we present our threat model used
in this work.

A DNN-based image watermarking model [1], [2], [7]–[10],
[12], [14]–[16], [32]–[34], denoted by S, often involves two
components: an encoder and a decoder. Given an original
image Io that does not carry a watermark, the encoder,
denoted by E, is a deep neural network to add a message
w into Io. This produces a watermarked image, denoted by
Iw. The message w ∈ {0, 1}l is a sequence of l bits and
it is often called a watermark or a watermark message. We
write this process to add a message as Iw = E(Io, w). The
decoder, denoted by D, is a deep neural network that extracts
the message w from Iw. We write this process to extract a
message as w = D(Iw).

Given a victim DNN-based image watermarking model S
to be attacked, we consider the following threat model, which
describes an attacker’s access to different types of information.
1) The decoder D. We consider the following two versions

of the attacker’s access to D: a) White-box version: the
attacker has complete knowledge of D, such as its model
architecture and model parameters; and b) Black-box ver-
sion: the attacker has zero knowledge about D and cannot
even use D as a black box to decode messages.

2) The encoder E. The attacker has zero knowledge about the
internal mechanism of E, such as the model architecture,
model parameters and watermarking algorithm. However,
the attacker can pretend to be a normal user of E and use
E as a black box to generate watermarked images with
known messages.

3) The training images. Denote by XO the training dataset
used to train S. The attacker cannot access the images
in XO; and the attacker has zero knowledge about the
distribution of the images in XO.

4) The publicly available images. The attacker can access
publicly available images that are not watermarked by S.

5) The messages of target watermarked images to attack.
For each target watermarked image Iw, the attacker does
not know the message w carried by Iw.

IV. FAST AND EFFECTIVE OVERWRITE ATTACK

In this section, we introduce and formulate the fast and
effective overwrite attack against DNN-based image water-
marking models. We first define the task of fast and effective
overwrite attack as follows.

Definition 1. Given a victim DNN-based image watermarking
model S and a real-valued threshold ξ > 0, the task of fast
and effective overwrite attack (FEOA) is to train a single
noise image, denoted by δ, such that

1) for each watermarked image Iw produced by S, adding
δ to Iw will change the message w carried by Iw to a
different message; and

2) the L2-norm of δ, denoted by ∥δ∥2, is not larger than ξ.

The first condition in Definition 1 requires D(Iw + δ) ̸=
D(Iw), which means adding δ to Iw overwrites the message
of Iw to a different one. When this happens, we say the
watermarked image Iw is successfully attacked by the noise
image δ. The second condition limits the L2-norm of δ by ξ.
By plugging this constraint into the definition of PSNR, we
can derive the lower bound between the watermarked image
Iw and the attacked image Iw + δ, that is,

PSNR(Iw, Iw + δ) ≥ 10 · log10
(
d ·max2

ξ2

)
, (1)

where max = 255 is the maximum possible pixel value of the
image and d is the total number of pixels in Iw. Apparently, a
smaller value ξ leads to a larger PSNR, thus reducing the
damage to the utility (i.e., quality) of the attacked image.
Please also refer to Fig. 1(a) for the key idea of the above
FEOA task.

To train the single noise image δ, we first obtain a training
dataset consisting of N watermarked images with known
messages, denoted by X . An attacker can obtain the training
images in X by pretending to be a normal user of the
watermarking system S. In this way, the attacker can generate
a set of watermarked images with known messages by using
the encoder of S to watermark publicly available images. Here,
X is different from the training dataset XO used to train S,
because the attacker has zero knowledge about XO.

The task of FEOA aims to train δ based on X . We formulate
this task as a constrained optimization problem, that is,

min
δ

− 1

|X|
∑

Iw∈X

L
(
F (Iw + δ), w

)
,

s.t. ∥δ∥2 ≤ ξ,

(2)

where δ is the noise image to train, ξ is the upper bound
of the L2-norm of δ, Iw ∈ X is a training image, w is
the true message of Iw, and |X| is the size of X , The
loss function L(·, ·) computes the distance between two l-
dimensional vectors, that is,

L(w′, w) = −
l∑

i=1

wi logw
′
i + (1− wi) log(1− w′

i), (3)

where w′
i and wi are the i-th entries in the vectors w′ and w,

respectively. When using L(w′, w) in (2), we have w to be
the true message of Iw, and w′ = F (Iw + δ) is the message
decoded by the function F (·) from the attacked image Iw+δ.
The i-th entry of w′ indicates the likelihood for the i-th bit of
the decoded message to be equal to one. In summary, (2) aims
to train a single noise image δ, such that the message decoded
from Iw + δ can be as different from the true message w as
possible. This fulfills the purpose of overwriting the messages
of watermarked images.

The optimization problem in (2) can be easily solved by
the projected gradient descent (PGD) [39], which requires to
know F (·) in order to pass gradients to δ. Depending on the
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attacker’s access to the decoder D of S, we can obtain F (·)
in the following two ways.

In the white-box version where the attacker has access to
the decoder D of S, F (·) can be obtained from D by excluding
the last layer of D. This is because the second-to-last layer of
D produces the likelihood for each bit of the decoded message
to be equal to one [23].

In the black-box version where D is not accessible, the
attacker can train a surrogate model, denoted by FS , to act as
the proxy of F (·). Specifically, FS is trained by solving the
following optimization problem:

min
θ

1

|XS |
∑

Iw∈XS

L
(
FS(Iw), w

)
, (4)

where θ is the model parameters of FS , XS is a training
dataset of watermarked images obtained in the same way as
how we obtain X , and |XS | is the size of XS . A detailed
description of XS is introduced later in Section VI-A. Inspired
by prior works [7], [12], we choose a ResNet-50 [40] with l
sigmoid-activated output neurons in the last layer as the model
architecture of FS . ResNet-50 is a deep convolutional neural
network consisting of 50 layers with residual connections and
we use l sigmoid-activated output neurons in the last layer
such that FS(Iw) produces the likelihood that each bit in the
decoded message is equal to one. This model architecture has
been shown to be effective in extracting watermark messages
from watermarked images [7], [12] and we empirically find
good attack performance of our methods when adopting it
as FS in the experiments. We also investigate the impact of
different model architectures of FS on the attack performance
in Section VI-F. After training FS , we can replace the F (·)
in (2) by FS to train δ.

Given the trained noise image δ, attacking a new water-
marked image Inew is as simple as adding δ to Inew and clipping
the pixel values of Inew + δ to the range of [0, 255]. The
noise image δ does not need to be re-trained or fine-tuned
to attack different watermarked images. Due to the simplicity
of launching an attack, FEOA is able to achieve an extremely
fast attack speed, which opens the door to effectively attacking
a large number of watermarked images at scale.

The effectiveness of FEOA stems from the inherent vulnera-
bility of DNN-based decoders to input noise. Although DNN-
based image watermarking models exhibit robustness against
classic attacks, they all extract watermark messages relying on
the DNN-based decoder D, which is inherently susceptible to
input noise due to its nonlinear nature and high-dimensional
input space [41]–[43]. This enables a carefully crafted noise
image δ that, when added to input watermarked images, can
induce significant deviations in D’s output, thereby preventing
D from extracting true messages. Furthermore, as revealed
in [44], such a noise often has a dominant contribution to the
DNN’s response. This dominance allows δ to overwrite the
true messages of many watermarked images by misleading D
into extracting fake messages. These fundamental limitations
of DNN-based decoders underpin the effectiveness of FEOA.

Moreover, we find that the noise image trained by FEOA
is not unique. Due to the non-convexity of (2), there exist
many different noise images, each of which can successfully

attack a different set of watermarked images. This motivates us
to extend FEOA to a more advanced adaptive version, which
trains k noise images to further improve attack effectiveness
based on the principle of divide and conquer.

V. ADAPTIVE FAST AND EFFECTIVE OVERWRITE ATTACK

In this section, we first introduce how to extend the task of
FEOA to the task of adaptive FEOA. Then, we formulate this
task as an optimization problem and describe how to solve the
problem.

A. Task Definition

As shown in Fig. 1(b), the key idea of adaptive FEOA is
to train a set of k noise images and adaptively select the
most effective noise image to attack each new watermarked
image. The selection is made by a selective neural network
that is trained together with the noise images. In this way,
if each of the k noise images successfully attacks a different
set of watermarked images, then we will successfully attack
the union of the k sets of watermarked images, which leads to
higher attack effectiveness. Following this key idea, we extend
the task of FEOA in Definition 1 to the following task.

Definition 2. Given a victim DNN-based image watermarking
model S and a real-valued threshold ξ > 0, the task of
adaptive fast and effective overwrite attack (AFEOA) is to
train a set of k noise images, denoted by P = {δ1, . . . , δk},
and a selective neural network, denoted by hβ , such that

1) for each watermarked image Iw produced by S, hβ

selects the most effective noise image in P to attack Iw,
which will change the message w carried by Iw to a
different message; and

2) for each noise image δ ∈ P , ∥δ∥2 ≤ ξ.

AFEOA is “adaptive” because the most effective noise
images for different watermarked images may be different,
and AFEOA uses hβ to adaptively select the most effective
noise image when attacking each watermarked image Iw. Only
the selected noise image is used to attack Iw. Therefore,
when using k noise images to perform AFEOA, the target
watermarked images fall into k separate subsets, where hβ

selects the same noise image to attack every Iw in the same
subset. This implements the principle of divide and conquer,
where each noise image is used to perform the FEOA attack
in each subset of watermarked images. As a result, AFEOA
will improve the attack effectiveness because the set of water-
marked images successfully attacked by AFEOA will be the
union of the successfully attacked images in each subset.

B. Formulating the AFEOA Task

In this subsection, we first introduce the design details of the
selective neural network hβ . Then, we formulate the AFEOA
task into a continuous optimization problem.

The selective neural network hβ is a DNN with parameters
β. Given a watermarked image Iw as input, hβ(Iw) outputs
a k-dimensional probability vector, that is, hβ(Iw) = π =
{π1, . . . , πk}. Ideally, the i-th entry of π, denoted by πi,
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represents the probability of selecting the i-th noise image
δi ∈ P as the most effective noise image to attack Iw.
We adopt a SqueezeNet [45] with k softmax-activated output
neurons in the last layer as the model architecture of hβ .
SqueezeNet is a lightweight convolutional neural network that
consists of 18 layers. It has been shown to perform well in
many different vision tasks [46], [47], and we empirically ob-
serve good attack performance of AFEOA in the experiments
when employing SqueezeNet as hβ . We also investigate the
impact of different model architectures of hβ on the attack
performance of AFEOA in Section VI-F.

Denote by z a categorical variable following the categorical
distribution characterized by π. Since π = hβ(Iw), the
distribution of z is characterized by hβ(Iw), thus we write
z ∼ hβ(Iw). We encode z as a k-dimensional one-hot vector,
where the i-th entry of z being equal to one means the i-
th noise image δi ∈ P is selected by hβ(Iw). The selection
process is implemented as C(P, z) = δ1 · z1 + . . . + δk · zk,
where zi, i ∈ {1, . . . , k}, is the i-th entry of z.

Now, we extend (2) to formulate the task of AFEOA as the
following continuous optimization (CO) problem.

min
β,P

− 1

|X|
∑

Iw∈X

Ez∼hβ(Iw)

[
L
(
F (Iw + C(P, z)), w

)]
,

s.t. ∥δ∥2 ≤ ξ,∀δ ∈ P,
(5)

where Iw is a watermarked image in the training dataset X ,
w is the true message of Iw, F (·) and L(·, ·) are the same
functions as in (2).

Minimizing the objective function in (5) requires to maxi-
mize the expectation term Ez∼hβ(Iw)[·] for each watermarked
image Iw ∈ X , which can also be written as Ez∼hβ(Iw)[·] =∑k

i=1 πiL(F (Iw + δi), w). Denoted by δi∗ ∈ P the most
effective noise image in attacking Iw, the distance between
F (Iw + δi∗) and w will be the largest among all the noise
images in P , which produces the largest value of L(F (Iw +
δi), w). Thus, in order to maximize

∑k
i=1 πiL(F (Iw+δi), w),

the probability corresponding to δi∗ , denoted by πi∗ ∈ π,
should be the highest among all the probabilities in π. Since
π = hβ(Iw), this means the noise image in P corresponding to
the highest probability output by hβ(Iw) is the most effective
noise image in attacking Iw. Therefore, by minimizing the
objective function in (5) to train the set of k noise images
in P and the selective neural network hβ , the noise image
selected by hβ(Iw) with the highest probability is often the
most effective noise image in P to attack Iw. This fulfills the
purpose of AFEOA. We verify the validity of hβ in selecting
the most effective noise image in Appendix F.

C. Solving the CO Problem

Solving the CO problem in (5) needs to explicitly com-
pute the expectation term Ez∼hβ(Iw)[·] for every watermarked
image Iw ∈ X . However, this could be computationally
expensive when the number of noise images k is large, because
it requires computing L(F (Iw+C(P, z)), w) for k times, each
for one possible value of z.

To address this issue, we apply the Gumbel softmax
trick [48] to convert the optimization problem in (5) into

min
β,P

− 1

|X|
∑

Iw∈X

Eg∼Gumbel(0,1)

[
L
(
F (Iw + C(P, z′)), w

)]
,

s.t. ∥δ∥2 ≤ ξ,∀δ ∈ P,
(6)

where g = [g1, . . . , gk] is a k-dimensional vector, the en-
tries in g are independent random variables following the
Gumbel(0, 1) distribution [48], and z′ = [z′1, . . . , z

′
k] is a k-

dimensional vector with the i-th entry defined as

z′i =
exp

(
(log πi + gi) /τ

)∑k
j=1 exp

(
(log πj + gj)/τ

) . (7)

Here, the parameter τ > 0 is a temperature parameter used
by the Gumbel softmax trick [48]. A smaller temperature τ
makes z′ closer to a one-hot vector, but it also causes a larger
variance of the gradients computed by back-propagation when
optimizing the objective function in (6) [48]. Following [49],
[50], we start by setting τ to a large value and then gradually
anneal it to a smaller value as the training continues. We adopt
the following annealing schedule:

τ = max
(
0.01, exp(−1e− 4 · t)

)
, (8)

where t is number of training iterations and τ is updated every
2000 iterations.

By applying the above Gumbel softmax trick, we can
estimate the expectation term Eg∼Gumbel(0,1)[·] in (6) by
sampling the entries of g from the Gumbel(0, 1) distribution.
This is much more efficient than explicitly computing the
expectation term Ez∼hβ(Iw)[·] in (5) when k is large.

We solve the optimization problem in (6) to train P and hβ

by stochastic gradient descent. Following the routine of Gum-
bel softmax trick [49], [50], for each gradient step, the value
of the objective function is computed on a batch of training
images XB sampled from X and a vector g sampled from
Gumbel(0, 1). Then, the gradients are computed by standard
back-propagation, and P and β are updated alternatively. We
update the noise images in P by the projected gradient descent
(PGD) [39] to ensure each noise image δ ∈ P is a feasible
solution satisfying the convex constraint ∥δ∥2 ≤ ξ in (6). We
update β using the ADAM optimizer [51], which is a classic
method to train neural networks. The training algorithm is
summarized in Algorithm 1.

Once P and hβ are trained, we can use the noise images
in P and hβ to quickly perform adaptive overwrite attacks
on new watermarked images in milliseconds. Specifically, to
attack a new watermarked image Inew, we first compute the
probability vector π = hβ(Inew). Then, we select the noise
image corresponding to the highest probability in π to attack
Inew. Denote by δi∗ the selected noise image, we attack Inew
by simply adding δi∗ to Inew and clipping the pixel values of
the resulting attacked image I ′new = Inew + δi∗ to the range
of [0, 255]. Since selecting the noise image only requires a
forward pass of hβ and the noise images in P do not need to
be further fine-tuned or re-trained when launching new attacks,
performing AFEOA to attack a single watermarked image only
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Algorithm 1: Solving the CO problem
Inputs : The decoder D or the surrogate model FS ,

the training dataset X , the number of noise
images k and the threshold ξ.

Outputs: The trained noise images in P and the
trained selective neural network hβ .

1 Initialize each noise image in P by zeros.
2 Initialize β of hβ by the Kaiming initialization [52].
3 Set the number of training iterations t = 1.
4 do
5 Sample a batch of training images XB from X

and sample g from Gumbel(0, 1).
6 Use XB and g to compute the gradients of P and

update P by the projected gradient descent [39].
7 Repeat step-5 to sample a new pair of XB and g.
8 Use XB and g to compute the gradients of β and

update β by the ADAM optimizer [51].
9 If t mod 2000 = 0 then update τ by (8).

10 Update t← t+ 1.
11 while not converge;
12 return P and hβ .

Algorithm 2: Conducting an AFEOA attack
Inputs : The trained noise images in P , the trained

selective neural network hβ and a new
watermarked image Inew.

Output: The attacked image I ′new.
1 Compute: π = hβ(Inew).
2 Select: i∗ ← argmaxi πi.
3 Attack: I ′new ← Inew + δi∗ .
4 Clip the pixel values of I ′new to the range of [0, 255].
5 return I ′new.

takes about 2 milliseconds on an NVIDIA RTX 3090 GPU.
We summarize the attacking process in Algorithm 2.

The effectiveness of AFEOA not only stems from the
inherent vulnerability of DNN-based decoders to input noise,
but is also amplified by implementing the principle of divide
and conquer. By training k noise images such that each of them
focuses on attacking a large but substantially different subset
of watermarked images, the subsets of images successfully
attacked by different noise images are complementary to each
other. Hence, when using the selective neural network hβ to
adaptively select the most effective noise image to attack each
watermarked image, the set of images successfully attacked by
AFEOA will be the union of the successfully attacked images
in each of the k subsets. Therefore, compared to using a single
noise image to attack all watermarked images, AFEOA can
successfully attack a larger set of watermarked images, thus
offering high attack effectiveness.

VI. EXPERIMENTS

In this section, we systematically evaluate the performance
of the proposed FEOA and AFEOA against DNN-based im-
age watermarking models. We first present the experimental

settings and our evaluation method. Then, we compare the
performance of FEOA and AFEOA with baselines. Next,
we analyze the effect of the number of noise images k on
the performance of AFEOA. We also conduct an ablation
study to investigate the impact of different design choices on
the performance of our methods. Last, we discuss potential
limitations of our methods.

Due to the limit of space, we present the following exper-
iments in the Appendix of the supplementary material. We
empirically verify the lower bound of PSNR given by (1) in
Appendix E and the validity of the selective neural network
hβ in selecting the most effective noise image in Appendix
F. We also conduct a case study in Appendix G to show the
watermarked images attacked by different attack methods.

A. Experimental Settings

Baselines. We compare the proposed attack methods with
eight baselines, including 1) five advanced attack methods,
such as WMAttacker [27], Diffpure [26], RinseDiff [31],
RinseVAE [31] and steganalysis-based removal (SBR) [38];
and 2) three classic attack methods, such as Gaussian noise [8],
[17], [27], Gaussian blur [7], [27] and JPEG [9], [27], [32].

Our methods. For each of FEOA and AFEOA, we imple-
ment both the white-box version and the black-box version of
it. The white-box versions of FEOA and AFEOA are denoted
as FEOA-WB and AFEOA-WB, respectively; and their black-
box counterparts are denoted as FEOA-BB and AFEOA-BB,
respectively.

Victim models. We evaluate the performance of different
attack methods against seven representative DNN-based image
watermarking models, including HiDDeN (HD) [1], UDH [2],
SSL [7], RoSteALS (ROS) [12], Stable Signature (SS) [14],
TreeRing (TR) [15] and CRIW [16]. In addition, we also
attack the traditional image watermarking method DwtDctSvd
(DDS) [53]. The decoder of DDS is not differentiable, thus we
cannot employ FEOA-WB and AFEOA-WB to attack DDS.
We only attack DDS by FEOA-BB and AFEOA-BB, as the
surrogate model FS of DDS is differentiable.

Datasets. We use three benchmark datasets for evaluation,
including COCO [54], ImageNet [55] and Conceptual Cap-
tion [56]. The usage of the datasets is explained as follows.
1) We use the training datasets of COCO and ImageNet

to train victim models. For HD, UDH, ROS and CRIW,
we train their watermarking models on 10,000 images
sampled from the training datasets of COCO and ImageNet,
respectively. The rest of the watermarking models do not
use the datasets for training, because SSL and DDS do
not need to train a watermarking model, and we use the
pre-trained models of SS and TR released in their public
repositories.

2) We use the testing and validation datasets of COCO and
ImageNet to generate the testing dataset of watermarked
images, which are used to evaluate the performance of
different attack methods. For each of HD, UDH, ROS,
CRIW, SSL and DDS, we generate 1,000 watermarked im-
ages from 1,000 original images sampled from the testing
dataset of COCO and the validation dataset of ImageNet,
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respectively. Since SS and TR use text prompts to generate
watermarked images, we follow [14] to use the captions of
5,000 images sampled from the validation dataset of COCO
as the prompts to generate 5,000 watermarked images.

3) We use the training dataset of Conceptual Caption to
extract the watermark pattern of SBR and also train the
noise images, the selective neural network hβ and the
surrogate model FS of our methods. We first sample 10,000
original images from the training dataset of Conceptual
Caption. Then, for each watermarking model, we use the
original images to generate 10,000 watermarked images
with the same message, which are used to extract the
watermark pattern of SBR. We also use the same set of
original images to generate 10,000 watermarked images
with uniformly sampled messages for each watermarking
model. These images are used as the training dataset X
in (2) and (6) to train the noise images and hβ of our
methods. To train FS for FEOA-BB and AFEOA-BB, we
independently repeat the above steps to generate 10,000
new watermarked images, which are used as the training
dataset XS in (4) to train FS .

Implementation details. Here, we introduce the implemen-
tation details of the victim models, the baseline methods and
our methods.

All the victim models are implemented using their public
source codes and default configurations [1], [2], [7], [12],
[14]–[16], [53]. For the compared baseline methods, we use
their publicly available source codes [23], [26], [27], [31], [38]
and default optimal parameters.

For FEOA-WB and FEOA-BB, we set the learning rate of
the PGD to 10−3, the batch size to 16 and use 50 training
epochs. For AFEOA-WB and AFEOA-BB, we set the learning
rates of the ADAM optimizer and the PGD to 10−3, using
k = 150 and 100 training epochs if not otherwise specified. To
train the surrogate model FS , we use the ADAM optimizer and
set the learning rate to 10−3, batch size to 16 and the training
epochs to 100. In all experiments, we set l to the default
message length of the victim model. All the experiments are
conducted on a server with an NVIDIA RTX 3090 GPU, 64GB
main memory and an Intel(R) Core(TM) i9-10900K CPU @
3.70GHz.

B. Evaluation Method

We evaluate the attack performance of an attack method by
its attack effectiveness and the quality of attacked images. We
also evaluate the attack efficiency of each attack method.

Attack effectiveness. We evaluate the effectiveness of an
attack method in overwriting watermark messages in the
context of a typical image watermarking task named image
attribution [14], [17]. The goal of image attribution is to
identify the true message w carried by a watermarked image
Iw from a set of candidate messages, denoted by W =
{w1, . . . , wT }. Each watermarked image Iw may be classified
by the decoder of an image watermarking model as either “not
watermarked” if the decoder cannot decode a message from
Iw, or as watermarked with a specific message wi ∈W if wi

is successfully decoded from Iw. Following [14], [17], we set

the anticipated false positive rate of the image watermarking
model S to 10−4, and then evaluate the attribution accuracy
(ACC) [14] of S by the percentage of the watermarked images
whose true messages are correctly identified by the decoder of
S. At last, we evaluate the effectiveness of an attack method
by the attribution accuracy drop, that is,

∆ACC = ACCbefore − ACCafter, (9)

where ACCbefore and ACCafter are the attribution accuracies on
the testing dataset before and after the watermarked images
are attacked. Each 1

T proportion of the watermarked images in
the testing dataset are watermarked by one of the T messages
in W = {w1, . . . , wT }, which are uniformly sampled from
the space of {0, 1}l. A larger value of ∆ACC implies higher
attack effectiveness. In our experiments, we set T = 1 when
attacking SS, as the pre-trained models released in its public
repository only support embedding a single message. For the
other victim models, we use a default value of T = 10.

The quality of attacked images. Following the setting
of WMAttacker [27], we evaluate the quality of an attacked
image by measuring the peak signal-to-noise ratio (PSNR)
between the attacked image and its corresponding original
image that is not watermarked by any image watermark-
ing model. We report the average PSNR of all the images
in the testing dataset. In addition, we also evaluate the
Fréchet Inception Distance (FID) [57] between the attacked
images and their corresponding original images. A larger
average PSNR and a smaller FID mean higher quality of
attacked images, thus implying the attack method is causing
less damage to the utility of attacked images. An exceptional
case when evaluating the quality of attacked images is TR [15].
Since TR significantly modifies the content of an original
image to produce a watermarked image, the content of an
attacked image is similar to the watermarked image but quite
different from the original image (see an example in the second
column of Fig. 10(a) in the Appendix). As a result, the average
PSNR and FID between the attacked images and the original
images are not meaningful. Therefore, for TR, we report the
average PSNR and FID between the watermarked images and
the attacked images.

Attack efficiency. We evaluate the attack efficiency of each
attack method by total attack time, which is the overall time
cost to generate the attacked images for the 1,000 watermarked
images produced by HD, UDH, ROS, SSL, CRIW and DDS,
respectively, and for the 5,000 watermarked images produced
by SS and TR, respectively. Since the training of WMAttacker,
Diffpure, RinseDiff, RinseVAE, SBR and our methods are
done in an offline manner, we do not count the offline training
time cost as part of the total attack time. A smaller total
attack time indicates higher attack efficiency. We report the
total attack time in milliseconds by default.

C. Attack Performance

In this subsection, we compare the attack performance of
all the attack methods when evaluating the quality of attacked
images by average PSNR; and the attack performance when
evaluating the quality of attacked images by FID is reported
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Fig. 2. The ∆ACC and average PSNR on COCO. The caption of each
subfigure shows the name of victim model.

in Appendix B. Fig. 2 shows the results of ∆ACC and average
PSNR on COCO. Since the results on ImageNet resemble
those on COCO, we provide them in Fig. 6 of Appendix B
and focus on analyzing the results in Fig. 2 for the rest of this
subsection.

For each attack method, we report its ∆ACC at different
levels of average PSNR. The average PSNR of each attack
method is controlled by tuning the amount of noise added to
the attacked images. We introduce the details of how to tune
the amount of noise for each attack method in Appendix A.
In each subfigure of Fig. 2, a curve that is closer to the upper
right corner indicates that the corresponding attack method
achieves higher attack effectiveness (i.e., a higher ∆ACC) while
maintaining better image quality (i.e., a higher average PSNR),
thereby demonstrating superior attack performance.

As shown in Fig. 2, the curves of our methods, such as
FEOA-WB, FEOA-BB, AFEOA-WB and AFEOA-BB, are
much closer to the upper right corner than the curves of
the other baseline methods. This demonstrates their superior
attack performance. We can see that FEOA-WB outperforms
FEOA-BB and AFEOA-WB outperforms AFEOA-BB. This
is because the white-box versions of FEOA and AFEOA can
directly access the decoder of the victim model to train the
noise images, but the black-box versions can only access
the surrogate model. We can also see that the ∆ACC of

AFEOA-WB and AFEOA-BB is higher than that of FEOA-
WB and FEOA-BB, respectively, for almost every value of
the average PSNR. This indicates the efficacy of AFEOA in
further improving attack effectiveness.

The image-regeneration attack methods, such as WMAt-
tacker, Diffpure, RinseDiff and RinseVAE, demonstrate infe-
rior attack performance due to their low average PSNR. These
methods cannot achieve a high average PSNR because they
either use diffusion models [35], [36], [58] or a variational
autoencoder (VAE) [59] to regenerate attacked images, but
they cannot control the intrinsic noise added by diffusion
models or VAE to the attacked images. Here, the intrinsic
noise is not the Gaussian noise removed by the denoising step
of diffusion models or the noise added by VAE during the
encoding stage, it is the absolute difference of pixel values
between the attacked image and the target watermarked image.
Since the diffusion models and VAE often over-smooth the
attacked images [27], they introduce a large amount of intrinsic
noise that cannot be reduced by tuning the hyperparameters
of WMAttacker, Diffpure, RinseDiff and RinseVAE.

The classic attack methods, such as Gaussian noise, Gaus-
sian blur and JPEG, fail to achieve a large ∆ACC without
significantly reducing the average PSNR. The reason is that
DNN-based image watermarking models are generally robust
to the classic attacks [1], [2], [8], [32], thus a classic attack
method has to add a large amount of noise in order to achieve
a successful attack. We can also see in Fig. 2(f) that the classic
attack methods are relatively more effective in attacking the
traditional image watermarking method DDS. However, their
attack performance is still inferior to that of our methods.

SBR cannot achieve good attack performance, because the
watermark pattern extracted by SBR based on one watermark
message does not generalize well in attacking the other target
watermarked images with different messages [38].

An interesting finding is the high robustness of TR to
many baseline methods. We can see in Fig. 2(h) that many
baseline methods cannot achieve a high ∆ACC even with a
small average PSNR. This is because TR embeds a message
during the reverse diffusion process of diffusion models and
extracts the message by inverting this process [15]. In this way,
a watermarked image produced by TR has a significant pixel-
level difference from its original image, which allows TR to
embed a stronger watermark [15], [27]. However, our methods
still attain the best attack performance on TR. This is because
the inversion process of TR to extract messages is executed
using the diffusion model’s noise predictor, which is inherently
a DNN. Therefore, the watermark extraction mechanism of TR
effectively functions as a DNN-based decoder, thus inheriting
the vulnerability of DNN-based decoders to input noise. Our
methods can exploit this vulnerability to craft noise images
that disrupt the inversion process and thus prevent the accurate
recovery of embedded messages.

Recall that the noise images and the surrogate model FS

of our methods are trained on a dataset with a distribution
significantly different from that of the victim models’ training
datasets. This raises an interesting question: how can our
methods achieve strong attack performance despite this large
distribution gap? Our answers are as follows.
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First, the watermark patterns embedded in watermarked
images are largely determined by the encoder E of the victim
model, thus the distribution of watermark patterns does not
change much for images with a large distribution gap. Second,
the surrogate model FS is trained to recognize the water-
mark patterns instead of the image contents. Therefore, the
performance of FS in correctly decoding watermark patterns
is not affected much by the large distribution gap of training
images. Third, the noise images are trained to overwrite the
watermark patterns, thus their attack effectiveness is more
related to the distribution of the watermark patterns instead of
image contents. In summary, as demonstrated by the results in
Fig. 2, our methods achieve strong attack performance despite
the large distribution gap of training images. This improves
the practicality of the proposed attack methods, because an
attacker can launch strong attacks by simply using publicly
available images for training.

D. Attack Efficiency

In this subsection, we investigate the attack efficiency of
different attack methods. Table I reports the total attack time
on COCO, where the amount of noise for each attack method
is set to achieve the largest ∆ACC in Fig. 2. The results on
ImageNet are similar, thus we report them in Table VIII of
Appendix C and focus on discussing the results in Table I in
the following.

We can see that the smallest total attack time is consistently
achieved by FEOA-WB, FEOA-BB and SBR, which take
13∼18 milliseconds to attack the 1,000 watermarked images
of HD, UDH, SSL, ROS, CRIW and DDS, and about 85∼92
milliseconds to attack the 5,000 watermarked images of SS
and TR. For FEOA-WB and FEOA-BB, such a small total
attack time is achieved by their simple attack operation, which
generates an attacked image by simply adding the noise image
to the watermarked image. Once trained, the noise image
does not need any re-training or fine-tuning when attacking
new watermarked images, thus enabling us to launch very
fast attacks. SBR achieves a comparable total attack time to
FEOA-WB and FEOA-BB because it attacks a watermarked
image by simply subtracting the watermark pattern from
the watermarked image [38]. However, as demonstrated in
Section VI-C, SBR cannot achieve high attack effectiveness
because the watermark pattern extracted based on one water-
mark message does not generalize well in attacking the other
target watermarked images with different messages [38].

The classic attack methods, such as Gaussian noise, Gaus-
sian blue and JPEG, achieve a small total attack time due to
the simplicity of their attack scheme. However, they cost more
total attack time than FEOA-WB, FEOA-BB and SBR due to
the following reasons: 1) Gaussian noise requires to sample a
noise in each attack, which costs more time. 2) Gaussian blur
first samples a Gaussian noise and then it does a convolutional
operation, thus it costs even more time than Gaussian noise. 3)
JPEG compresses images through complex operations, which
costs much more time than the previous methods.

Compared to FEOA-WB and FEOA-BB, AFEOA-WB and
AFEOA-BB take extra time to choose the most effective

TABLE I
THE TOTAL ATTACK TIME (MILLISECONDS) ON COCO.

# attacked images 1,000 5,000

Victim models HD UDH SSL ROS CRIW DDS SS TR

FEOA-WB 14 14 14 17 14 n/a 85 90
FEOA-BB 14 14 15 18 14 14 87 92

AFEOA-WB 2,301 2,363 2,276 2,621 2,339 n/a 11,705 11,712
AFEOA-BB 2,342 2,360 2,280 2,616 2,327 2,345 11,890 11,727

Gaussian noise 112 119 114 135 116 118 660 670
Gaussian blur 216 218 211 246 217 225 1,235 1,225

JPEG 12,544 12,531 12,558 13,249 12,582 12,870 67,970 67,960
WMAttacker 50,462 51,295 50,735 58,493 50,569 51,314 292,335 293,170

Diffpure 84,259 84,960 85,603 97,149 85,569 86,324 487,660 486,510
RinseDiff 143,492 152,497 148,683 160,285 147,020 150,502 762,534 772,320
RinseVAE 75,691 76,122 75,349 84,672 74,730 75,606 405,682 410,062

SBR 14 15 13 18 15 14 87 92

TABLE II
THE TRAINING TIME (MINUTES) OF OUR METHODS.

Dataset Attack HD UDH SSL ROS CRIW DDS SS TR

COCO

FEOA-WB 13 15 12 25 23 n/a 24 26
FEOA-BB 18 19 18 24 18 18 25 25

AFEOA-WB 77 81 79 89 97 n/a 83 85
AFEOA-BB 83 82 80 87 85 80 89 87

ImageNet

FEOA-WB 12 16 13 25 23 n/a n/a n/a
FEOA-BB 18 19 18 24 19 18 n/a n/a

AFEOA-WB 76 83 80 88 95 n/a n/a n/a
AFEOA-BB 83 84 79 89 86 78 n/a n/a

noise image by forward passing a watermarked image through
the selective neural network hβ . However, considering the
significant improvement of attack effectiveness achieved by
AFEOA-WB and AFEOA-BB in Section VI-C, the extra time
cost is a cost-effective tradeoff.

The image regeneration attack methods, such as WMAt-
tacker, Diffpure, RinseDiff and RinseVAE, cost a significantly
larger total attack time than the other methods. This is because
regenerating images by a diffusion model or VAE costs a lot of
time and the image-regeneration process has to be performed
in an online manner for each new target watermarked image
to attack.

In summary, the key reason for the small total attack time
of our methods is that the noise images, the selective neural
network hβ and the surrogate model FS are only trained once
in an offline manner; and they do not need to be further re-
trained or fine-tuned when attacking new target watermarked
images. The offline training of our methods is also efficient.
As reported in Tables II and III, on a single NVIDIA RTX
3090 GPU, training the noise images and hβ costs at most 97
minutes; and training FS costs at most 143 minutes.

E. The Effect of k

In this subsection, we analyze the impact of the number
of noise images k on the performance of AFEOA. Since the
quality of the watermarked images attacked by AFEOA is
mainly determined by the threshold ξ and the attack efficiency
of AFEOA is not affected much by k, we focus on investi-
gating how the ∆ACC of AFEOA is affected by k. We use
ξ = 800 when attacking HD, UDH and DDS and use ξ = 2000
when attacking SSL, ROS, CRIW, SS and TR. We adopt
k ∈ {1, 50, 100, 150, 200} and the other experimental settings
are the same as in Section VI-C. Fig. 3 shows the results of
∆ACC on COCO, where the ∆ACC of FEOA-WB and FEOA-
BB is shown by horizontal lines and used as reference lines
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TABLE III
THE TRAINING TIME (MINUTES) OF FS .

Dataset HD UDH SSL ROS CRIW DDS SS TR

COCO 119 116 122 138 119 118 140 143

ImageNet 122 117 122 140 117 118 n/a n/a
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Fig. 3. The ∆ACC for k ∈ {1, 50, 100, 150, 200} on COCO.

to compare with the ∆ACC of AFEOA-WB and AFEOA-BB
at different values of k. The results on ImageNet are similar
and we discuss them in Appendix D.

As shown in Fig. 3, when k = 1, the ∆ACC of AFEOA-WB
and AFEOA-BB is close to that of FEOA-WB and FEOA-
BB, respectively. This is because k = 1 means both AFEOA-
WB and AFEOA-BB use a single noise image, thus they
degenerate to FEOA-WB and FEOA-BB, respectively. When
1 ≤ k < 150, a larger k improves the ∆ACC of AFEOA-WB
and AFEOA-BB. This is because each new noise image may
successfully attack some new watermarked images that cannot
be successfully attacked by the other noise images, thus using
more noise images (i.e., increasing k) increases the number
of successfully attacked images. When k ≥ 150, increasing
k does not improve ∆ACC for AFEOA-WB and AFEOA-BB
very much. This is due to diminishing marginal utility, that
is, the noise images when k = 150 have already successfully
attacked a large set of watermarked images, which makes it
likely that any additional noise images will redundantly target
the same images. In summary, we can conclude from Fig. 3
that the attack effectiveness of AFEOA-WB and AFEOA-BB
is significantly better than that of FEOA-WB and FEOA-
BB, respectively, when k ≥ 150. This well demonstrates the
efficacy of AFEOA in improving attack effectiveness.

F. Ablation Study

In this subsection, we conduct an ablation study to examine
the impact of three design choices on the performance of
our methods, which include 1) initializing noise images by
zeros, 2) using ResNet-50 as the surrogate model and 3)
using SqueezeNet as the selective neural network. In the
ablation study, each of the three design choices is replaced
by several alternatives. We follow the experimental settings
in Section VI-E, reporting and discussing the results of the
ablation study as follows.

TABLE IV
THE ∆ACC WHEN INITIALIZING NOISE IMAGES BY DIFFERENT METHODS.

Dataset Attack Init HD UDH SSL ROS CRIW DDS SS TR

COCO

FEOA-WB
Zeros 0.79 0.89 0.89 0.87 0.94 n/a 0.97 0.29

Gaussian 0.78 0.89 0.90 0.87 0.93 n/a 0.97 0.30
Uniform 0.79 0.88 0.89 0.88 0.94 n/a 0.86 0.29

FEOA-BB
Zeros 0.65 0.74 0.86 0.79 0.84 0.99 0.92 0.12

Gaussian 0.66 0.73 0.85 0.78 0.84 0.99 0.91 0.12
Uniform 0.65 0.74 0.85 0.80 0.84 0.99 0.91 0.12

AFEOA-WB
Zeros 0.87 0.97 0.95 0.96 0.98 n/a 0.99 0.36

Gaussian 0.86 0.95 0.96 0.94 0.96 n/a 0.99 0.33
Uniform 0.84 0.96 0.93 0.94 0.95 n/a 0.99 0.35

AFEOA-BB
Zeros 0.73 0.83 0.89 0.84 0.91 0.99 0.97 0.19

Gaussian 0.70 0.83 0.88 0.82 0.92 0.99 0.95 0.18
Uniform 0.72 0.80 0.89 0.84 0.91 0.99 0.95 0.19

ImageNet

FEOA-WB
Zeros 0.85 0.73 0.93 0.89 0.96 n/a n/a n/a

Gaussian 0.85 0.73 0.92 0.88 0.95 n/a n/a n/a
Uniform 0.84 0.74 0.93 0.90 0.96 n/a n/a n/a

FEOA-BB
Zeros 0.76 0.55 0.86 0.72 0.82 0.99 n/a n/a

Gaussian 0.75 0.54 0.86 0.72 0.82 0.99 n/a n/a
Uniform 0.77 0.55 0.86 0.71 0.82 0.99 n/a n/a

AFEOA-WB
Zeros 0.94 0.82 0.99 0.96 0.99 n/a n/a n/a

Gaussian 0.92 0.80 0.99 0.95 0.99 n/a n/a n/a
Uniform 0.93 0.79 0.99 0.93 0.98 n/a n/a n/a

AFEOA-BB
Zeros 0.85 0.62 0.92 0.79 0.90 0.99 n/a n/a

Gaussian 0.84 0.60 0.91 0.76 0.87 0.99 n/a n/a
Uniform 0.86 0.62 0.89 0.77 0.88 0.99 n/a n/a

TABLE V
THE ∆ACC WHEN USING DIFFERENT MODEL ARCHITECTURES FOR FS .

Dataset Attack FS HD UDH SSL ROS CRIW DDS SS TR

COCO

FEOA-BB

ResNet-50 0.65 0.74 0.86 0.79 0.84 0.99 0.92 0.12
VGG-16 0.64 0.72 0.86 0.77 0.83 0.99 0.89 0.11

Inception-V3 0.62 0.73 0.84 0.75 0.82 0.98 0.91 0.11
SqueezeNet 0.63 0.72 0.85 0.75 0.84 0.98 0.90 0.09

AFEOA-BB

ResNet-50 0.73 0.83 0.89 0.84 0.91 0.99 0.97 0.19
VGG-16 0.71 0.81 0.86 0.83 0.91 0.99 0.95 0.17

Inception-V3 0.74 0.80 0.87 0.85 0.89 0.98 0.97 0.17
SqueezeNet 0.70 0.79 0.85 0.82 0.87 0.98 0.93 0.15

ImageNet

FEOA-BB

ResNet-50 0.76 0.55 0.86 0.72 0.82 0.99 n/a n/a
VGG-16 0.74 0.53 0.85 0.70 0.80 0.99 n/a n/a

Inception-V3 0.74 0.53 0.84 0.68 0.81 0.99 n/a n/a
SqueezeNet 0.72 0.52 0.84 0.70 0.80 0.98 n/a n/a

AFEOA-BB

ResNet-50 0.85 0.62 0.92 0.79 0.90 0.99 n/a n/a
VGG-16 0.83 0.60 0.91 0.79 0.88 0.98 n/a n/a

Inception-V3 0.84 0.62 0.87 0.77 0.88 0.98 n/a n/a
SqueezeNet 0.83 0.60 0.91 0.76 0.87 0.97 n/a n/a

Table IV reports the results of ∆ACC when noise images are
initialized by the zeros initialization, the standard Gaussian
initialization and the standard uniform initialization, respec-
tively. We cannot report the results of attacking SS and TR on
ImageNet since ImageNet does not provide image captions
for SS and TR to generate watermarked images; and we
cannot report the results of attacking DDS by the white-box
versions of our methods because the decoder of DDS is not
differentiable. In addition, since the quality of attacked images
and the attack efficiency of our methods are not affected much
by different initialization methods, we skip reporting them to
save redundancy. We can see from Table IV that using different
initialization methods does not have a significant effect on the
∆ACC. Thus, we choose the zeros initialization by default.
This also demonstrates that our methods are insensitive to
the initialization of noise images and can consistently achieve
excellent attack performance.

Table V reports the results of ∆ACC when using ResNet-
50 [40], VGG-16 [60], Inception-V3 [61] and SqueezeNet [45]
as the model architectures of the surrogate model FS , respec-
tively. We do not report the results of FEOA-WB and AFEOA-
WB since they work in the white-box setting and do not need
to train FS . Again, we cannot report the results of attacking
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TABLE VI
THE ∆ACC WHEN USING DIFFERENT MODEL ARCHITECTURES FOR hβ .

Dataset Attack hβ HD UDH SSL ROS CRIW DDS SS TR

COCO

AFEOA-WB

SqueezeNet 0.87 0.97 0.95 0.96 0.98 n/a 0.99 0.36
ResNet-50 0.86 0.95 0.94 0.96 0.97 n/a 0.99 0.34
VGG-16 0.83 0.92 0.90 0.92 0.93 n/a 0.96 0.29

Inception-V3 0.85 0.94 0.92 0.94 0.96 n/a 0.98 0.32

AFEOA-BB

SqueezeNet 0.73 0.83 0.89 0.84 0.91 0.99 0.97 0.19
ResNet-50 0.71 0.83 0.86 0.80 0.90 0.98 0.95 0.17
VGG-16 0.67 0.79 0.81 0.78 0.87 0.95 0.91 0.14

Inception-V3 0.69 0.81 0.84 0.80 0.88 0.98 0.93 0.15

ImageNet

AFEOA-WB

SqueezeNet 0.94 0.82 0.99 0.96 0.99 n/a n/a n/a
ResNet-50 0.93 0.82 0.99 0.97 0.99 n/a n/a n/a
VGG-16 0.89 0.79 0.95 0.91 0.97 n/a n/a n/a

Inception-V3 0.91 0.81 0.97 0.95 0.99 n/a n/a n/a

AFEOA-BB

SqueezeNet 0.85 0.62 0.92 0.79 0.90 0.99 n/a n/a
ResNet-50 0.84 0.59 0.90 0.77 0.87 0.99 n/a n/a
VGG-16 0.78 0.57 0.86 0.74 0.84 0.96 n/a n/a

Inception-V3 0.81 0.59 0.89 0.76 0.87 0.98 n/a n/a

TABLE VII
THE TOTAL ATTACK TIME (MILLISECONDS) WHEN USING DIFFERENT

MODEL ARCHITECTURES FOR hβ .

Dataset Attack hβ HD UDH SSL ROS CRIW DDS SS TR

COCO

AFEOA-WB

SqueezeNet 2,301 2,363 2,276 2,621 2,339 n/a 11,705 11,712
ResNet-50 9,476 9,631 9,490 11,305 9,563 n/a 56,732 56,450
VGG-16 36,186 37,942 36,266 40,078 37,004 n/a 168,592 170,206

Inception-V3 13,293 13,604 14,068 16,937 13,660 n/a 66,146 67,231

AFEOA-BB

SqueezeNet 2,342 2,360 2,280 2,616 2,327 2,345 11,890 11,727
ResNet-50 9,519 9,652 9,629 11,252 9,528 9,403 57,025 56,855
VGG-16 37,390 36,014 37,686 40,863 36,852 37,520 171,143 172,5114

Inception-V3 14,296 14,842 14,930 17,385 13,760 13,425 67,845 67,307

ImageNet

AFEOA-WB

SqueezeNet 2,424 2,360 2,334 2,868 2,482 n/a n/a n/a
ResNet-50 9,425 9,639 9,520 11,740 9,735 n/a n/a n/a
VGG-16 35,580 36,239 36,288 41,214 37,139 n/a n/a n/a

Inception-V3 14,765 13,882 14,073 16,862 14,463 n/a n/a n/a

AFEOA-BB

SqueezeNet 2,569 2,364 2,348 2,832 2,496 2,502 n/a n/a
ResNet-50 9,650 9,823 9,742 12,059 9,733 9,584 n/a n/a
VGG-16 37,820 36,926 37,118 41,667 37,147 37,280 n/a n/a

Inception-V3 13,790 14,663 14,581 17,272 13,747 13,580 n/a n/a

SS and TR on ImageNet and we skip reporting the quality of
attacked images and the attack efficiency of our methods since
they are not affected much by different FS . We can observe
from Table V that while using different model architectures
for FS does not have a large impact on the ∆ACC, adopting
ResNet-50 as FS generally results in a slightly higher ∆ACC.
Hence, we choose ResNet-50 as the default model architecture
of FS . These results also indicate that FEOA-BB and AFEOA-
BB are not very sensitive to the choices of FS , which allows
them to generally attain excellent attack performance when the
decoder of a victim model is not accessible.

Tables VI and VII report the results of ∆ACC and total
attack time, respectively, when using SqueezeNet, ResNet-50,
VGG-16 and Inception-V3 as the model architectures of the
selective neural network hβ . We do not report the results of
FEOA-WB and FEOA-BB since they only train a single noise
image and do not use hβ . Due to the same reasons as in
Table IV, we cannot report the results of attacking SS and TR
on ImageNet and the results of attacking DDS by the white-
box versions of our methods. We skip reporting the quality of
attacked images since it is not affected much by different hβ .
As shown in Tables VI and VII, using different choices for
hβ does not cause a large influence on the ∆ACC. However,
choosing SqueezeNet as hβ leads to a slightly higher ∆ACC
in most cases and consistently results in a lower total attack
time due to its lightweight network structure. Therefore, we
use SqueezeNet as the default model architecture of hβ .
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Fig. 4. The ∆ACC on COCO when the victim models are trained in the
standard way, resisting FEOA-WB way, and resisting AFEOA-WB way,
respectively.
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Fig. 5. The ∆ACC on COCO when using 10,000, 7,000, 4,000 and 1,000
watermarked images, respectively, for the training of our methods.

G. Limitations of Our Methods

In this subsection, we discuss potential limitations of our
methods. In particular, we focus on two scenarios in which
our attacks may fail, including 1) victim models are trained
to resist our attacks and 2) the number of watermarked
images used by our methods for training the noise images, the
selective neural network and the surrogate model is limited.
We discuss these two scenarios separately in the following.

In the first scenario, we assume that the owners of the victim
models are informed of our attack methods, and thus they
can train their models to defend against our attacks. This can
be achieved in the same way as how the DNN-based image
watermarking models are trained to resist classic attacks [1],
[2], [12], [16]. Specifically, given a trained victim model S, the
model owner can apply our methods such as FEOA-WB and
AFEOA-WB to attack S to generate the noise images. Here
we use the white-box versions of our methods because the
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decoder D of S is accessible to the owner himself. Then, the
owner can continue to train S, during which each watermarked
image input to D is attacked by our methods via being added
with the noise image. In this way, D can be trained to extract
the true messages from the watermarked images attacked by
our methods, thus enhancing the ability to resist our attacks.

Fig. 4 shows the results of ∆ACC on COCO when the victim
models HD, UDH, ROS and CRIW are trained to resist FEOA-
WB and AFEOA-WB, respectively. For comparison, we also
show the results of the baseline methods and include the results
when these victim models are trained in the standard way, i.e.,
they are not trained to resist our attacks. For our methods, we
use ξ = 800 when attacking HD, UDH and ξ = 2000 when
attacking ROS and CRIW. We tune the amounts of noise for
Gaussian noise (GN), Gaussian blur (GB), JPEG and SBR to
achieve an average PSNR close to that of our methods. We
cannot report the results of WMAttacker, Diffpure, RinseDiff
and RinseVAE since they cause too much damage to the image
quality and the maximum average PSNR they can achieve is
much lower than that achieved by our methods.

As shown in Fig. 4, by training the victim models to resist
our attacks, the ∆ACC of our methods is reduced, which
demonstrates the effectiveness of the robust training. However,
our methods still outperform the compared baseline methods
by achieving a higher ∆ACC. This suggests that although our
attacks can be mitigated to some extent by the robust training,
they still remain very powerful, thus highlighting the necessity
to study more effective defenses in future research.

In the second scenario, we assume that the number of
watermarked images used by our methods to train the noise
images, the selective neural network and the surrogate model is
limited. Recall that an attacker can pretend to be a normal user
and use the encoder E of the victim model S as a black box to
obtain watermarked images with known messages. While this
is realistic because many real-world service providers (e.g.,
StegAI1 and Digimarc2) allow users to upload an image and
specify the watermark message, acquiring a large number of
watermarked images can be costly since such services may
be pay-per-use. Hence, we evaluate the attack effectiveness of
our methods under this constrained scenario by varying the
number of accessible watermarked images.

Fig. 5 shows the results of ∆ACC on COCO when attacking
HD, UDH, ROS and CRIW, where we train the noise images
and the selective neural network with 10,000, 7,000, 4,000, and
1,000 watermarked images, respectively, and train the surro-
gate model with the same number of watermarked images. We
adopt the same experimental settings as in Fig. 4 and show
the results of the baseline methods as reference. Again, we
cannot report the results of WMAttacker, Diffpure, RinseDiff
and RinseVAE because the maximum average PSNR they can
achieve is much lower than that achieved by our methods.

We can see from Fig. 5 that as the number of watermarked
images decreases, the ∆ACC of our methods is reduced ac-
cordingly. However, with only 1,000 watermarked images, our
methods still outperform the baseline methods in most cases.

1https://steg.ai
2https://www.digimarc.com

Since obtaining 1,000 watermarked images is economically
feasible (e.g., costing only 100 USD on StegAI), our methods
are cost-effective and maintain superior attack performance in
this real-world scenario.

VII. CONCLUSION

In this work, we introduce a novel fast and effective over-
write attack (FEOA) against DNN-based image watermarking
models. FEOA overwrites the true watermark messages of
many watermarked images by simply adding the same noise
image to them. This noise image is used to attack different
watermarked images without any re-training or fine-tuning,
thus enabling fast and effective overwrite attacks. We also
extend FEOA to its adaptive version named AFEOA to further
improve attack performance. Extensive experimental results
demonstrate the excellent performance of FEOA and AFEOA.
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APPENDIX A
CONTROLLING THE AMOUNT OF NOISE

In this section, we introduce how to control the amount of
noise for each attack method in our experiments as follows.

FEOA-WB, FEOA-BB, AFEOA-WB and AFEOA-BB over-
write the true message carried by a watermarked image by
adding a noise image to it. The amount of noise is controlled
by the threshold ω, which limits the L2-norm of the noise im-
age. We use ω → {100, 200, 500, 1000, 1500, 2000, 2500, 3000,
3500, 4000} for SSL, ROS, CRIW, SS and TR, and we use
ω → {50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600} for
HD, UDH and DDS.

WMAttacker [27] attacks a watermarked image by first
adding a Gaussian noise sampled from N (0, ε2) to each
entry in the embedding of the watermarked image and then
reconstructing the image from the noised embedding by Stable
Diffusion [35]. As demonstrated in [27], WMAttacker controls
the amount of Gaussian noise by the standard deviation ε. We
use ε → {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.

Diffpure [26] attacks a watermarked image by using a
pre-trained diffusion model [36] to denoise the watermarked
image. As shown in [26], Diffpure indirectly controls the
amount of noise by the diffusion purification step t. We use
t → {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}.

RinseDiff [31] attacks a watermarked image by repeating Z
times the process of noising the embedding of the image and
reconstructing the image by Stable Diffusion [35]. According
to [31], Z mainly controls the amount of the added noise. We
use Z → {1, 2, 3}.

RinseVAE [31] attacks a watermarked image by repeating Z
times the process of using a pre-trained variational autoencoder
(VAE) [59] to encode and decode the watermarked image.
According to [31], Z mainly controls the amount of the added
noise. We use Z → {1, 2, 3}.

SBR [38] attacks a watermarked image by subtracting
the watermark pattern ϑw extracted by SBR from a set of
watermarked images. According to [38], SBR controls the
amount of noise by multiplying ϑw by a factor of M . We
use M → {0.5, 1, 1.5, 2.0, 2.5, 3.0}.

Gaussian noise [8], [17], [27] adds a random Gaussian noise
sampled from N (0, ε2) to each pixel of a watermarked image.
The standard deviation ε controls the amount of noise. We use
ε → {0.02, 0.04, 0.06, 0.08, 0.10}.

Gaussian blur [1], [2], [7], [27] blurs a watermarked image
by convolving it with a Gaussian kernel to smoothen the signal
of the embedded message. The Gaussian kernel has a kernel
size s and a standard deviation ε . We set s = 5 and use
ε → {0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0} to control the amount
of added noise.

JPEG [9], [27], [32] is a common lossy image compression
technique. It has a parameter called quality factor Q, which
affects the amount of noise. We use Q → {10, 20, 30, 40, 50}.

APPENDIX B
ADDITIONAL ATTACK PERFORMANCE

Here, we introduce the additional results on the attack
performance of different attack methods, such as the results
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Fig. 6. The !ACC and average PSNR on ImageNet. The caption of each
subfigure shows the name of victim model.

of !ACC and average PSNR on ImageNet, and the results of
!ACC and FID on both COCO and ImageNet.

Fig. 6 shows the results of !ACC and average PSNR on
ImageNet, which complement the results previously shown
in Fig. 2. We cannot report the results of attacking SS and
TR on ImageNet, because ImageNet does not provide image
captions for SS and TR to generate watermarked images. We
can observe from Fig. 6 that our methods achieve the highest
!ACC while maintaining the largest average PSNR, which
demonstrates the superior attack performance of our methods.

Fig. 7 and Fig. 8 present the results of !ACC and FID on
COCO and ImageNet, respectively. In each figure, we report
the !ACC and FID of each attack method when using different
amounts of noise. For each specific amount of noise, we
produce one pair of !ACC and FID, thus drawing one point
in the figure. A point that is closer to the upper left corner of
the figure indicates higher attack effectiveness (i.e., a higher
!ACC) and better quality of attacked images (i.e., a lower
FID), thereby implying better attack performance. As shown
in Fig. 7 and Fig. 8, our methods outperform the baseline
methods by achieving the highest !ACC while maintaining
the lowest FID. This further demonstrates the good attack
performance of our methods.

APPENDIX C
TOTAL ATTACK TIME ON IMAGENET

In this section, we present the additional results on the attack
efficiency. Table VIII reports the total attack time of different
attack methods on ImageNet, where the amount of noise for
each attack method is set to achieve the largest !ACC in
Fig. 6. We cannot report the results of attacking SS and TR on
ImageNet since it does not provide image captions for SS and
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Fig. 7. The !ACC and FID on COCO. The caption of each subfigure shows
the name of victim model.

TABLE VIII
THE TOTAL ATTACK TIME (MILLISECONDS) ON IMAGENET.

# attacked images 1,000 5,000

Victim models HD UDH SSL ROS CRIW DDS SS TR

FEOA-WB 14 14 14 14 13 n/a n/a n/a
FEOA-BB 13 13 14 18 14 14 n/a n/a

AFEOA-WB 2,424 2,360 2,334 2,868 2,482 n/a n/a n/a
AFEOA-BB 2,569 2,364 2,348 2,832 2,496 2,502 n/a n/a

Gaussian noise 112 114 116 135 115 119 n/a n/a
Gaussian blur 207 211 219 248 209 216 n/a n/a

JPEG 12,538 12,577 12,542 13,553 12,584 12,520 n/a n/a
WMAttacker 51,484 51,220 51,929 58,539 51,530 51,349 n/a n/a

Diffpure 85,813 85,258 84,920 97,656 85,894 85,530 n/a n/a
RinseDiff 146,860 148,323 143,698 164,923 152,534 144,806 n/a n/a
RinseVAE 75,295 75,816 76,118 85,230 74,636 74,915 n/a n/a

SBR 14 14 15 18 16 14 n/a n/a

TR to generate watermarked images. Table VIII complements
the results previously reported in Table I, showing that the
results on ImageNet are consistent with those on COCO,
which further demonstrates the high attack efficiency of our
methods.

APPENDIX D
THE EFFECT OF k ON IMAGENET

Here, we introduce the additional results on the analysis of
the number of noise images k in Fig. 9, which complement the
results previously shown in Fig. 3. We follow the experimental
settings in Section VI-E. Again, we cannot report the results
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Fig. 8. The !ACC and FID on ImageNet. The caption of each subfigure
shows the name of victim model.
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Fig. 9. The !ACC for k → {1, 50, 100, 150, 200} on ImageNet.

of attacking SS and TR on ImageNet, as it does not provide
image captions for SS and TR to generate watermarked im-
ages. The additional results in Fig. 9 are similar to the previous
results shown in Fig. 3, thus enhancing our conclusion about
AFEOA in Section VI-E. This further demonstrates that the
training process of AFEOA is stable and consistent on different
image watermarking models and datasets.

APPENDIX E
THE LOWER BOUND OF PSNR

In this section, we empirically validate the lower bound of
PSNR given by (1). Table IX reports the results of our methods
on COCO and ImageNet when using ω = 800 for HD, UDH
and DDS and using ω = 2000 for SSL, ROS, CRIW, SS
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TABLE IX
THE LOWER BOUND OF PSNR AND THE EMPIRICAL PSNR ON COCO

AND IMAGENET.

Dataset Attack PSNR HD UDH SSL ROS CRIW DDS SS TR

COCO

FEOA-WB LB 36.9 36.9 29.0 35.0 29.0 n/a 35.0 35.0
Empirical 36.9 37.0 29.0 35.0 29.0 n/a 35.0 35.1

FEOA-BB LB 36.9 36.9 29.0 35.0 29.0 36.9 35.0 35.0
Empirical 36.9 36.9 29.0 35.0 29.0 36.9 35.0 35.0

AFEOA-WB LB 36.9 36.9 29.0 35.0 29.0 n/a 35.0 35.0
Empirical 37.0 37.0 29.0 35.0 29.0 n/a 35.0 35.0

AFEOA-BB LB 36.9 36.9 29.0 35.0 29.0 36.9 35.0 35.0
Empirical 36.9 36.9 29.0 35.0 29.0 36.9 35.0 35.0

ImageNet

FEOA-WB LB 36.9 36.9 29.0 35.0 29.0 n/a n/a n/a
Empirical 36.9 36.9 29.0 35.0 29.0 n/a n/a n/a

FEOA-BB LB 36.9 36.9 29.0 35.0 29.0 36.9 n/a n/a
Empirical 37.0 36.9 29.0 35.1 29.0 37.0 n/a n/a

AFEOA-WB LB 36.9 36.9 29.0 35.0 29.0 n/a n/a n/a
Empirical 36.9 36.9 29.0 35.0 29.0 n/a n/a n/a

AFEOA-BB LB 36.9 36.9 29.0 35.0 29.0 36.9 n/a n/a
Empirical 36.9 36.9 29.1 35.0 29.0 36.9 n/a n/a

TABLE X
THE PERCENTAGE OF WATERMARKED IMAGES FOR WHICH hω SUCCEEDS

IN SELECTING THE MOST EFFECTIVE NOISE IMAGE.

Dataset Attack HD UDH SSL ROS CRIW DDS SS TR

COCO AFEOA-WB 0.91 0.94 0.92 0.94 0.95 n/a 0.93 0.90
AFEOA-BB 0.84 0.88 0.85 0.82 0.90 0.89 0.88 0.85

ImageNet AFEOA-WB 0.93 0.90 0.93 0.92 0.96 n/a n/a n/a
AFEOA-BB 0.86 0.83 0.84 0.81 0.88 0.90 n/a n/a

and TR. The other experimental settings are the same as in
Section VI-E. Here, “LB” means the theoretical PSNR lower
bound computed by the right side of (1), and “Empirical”
means the empirical minimum value of PSNR(Iw, Iw + ϑ)
for all the watermarked images Iw. As shown in Table IX,
the empirical minimum value of PSNR(Iw, Iw + ϑ) is always
no smaller than the theoretical PSNR lower bound. This
demonstrates the correctness of (1).

APPENDIX F
VALIDITY OF THE SELECTIVE NEURAL NETWORK

In this section, we empirically verify the validity of the
selective neural network hω in selecting the most effective
noise image in P for each watermarked image. Specifically,
for each watermarked image Iw in the testing dataset, we first
use hω to select the noise image in P corresponding to the
highest probability output by hω(Iw), denoted as ϑi→ . Then, we
compute the function value of L(F (Iw+ϑi→), w) and compare
it with the function values when using the other noise images
in P to attack Iw. If ϑi→ produces the largest function value
among all the noise images in P , then we say hω successfully
selects the most effective noise image in P for Iw.

Table X reports the percentage of watermarked images for
which hω successfully selects the most effective noise image
for each of them, where we follow the experimental settings
in Section VI-E. We do not report the results of FEOA-WB
and FEOA-BB since they only train a single noise image and
do not use hω . As shown in Table X, when attacking different
victim models in the white-box setting by applying AFEOA-
WB, hω successfully selects the most effective noise image
for over 90% watermarked images. This well demonstrates
the validity of hω . In comparison, the percentage is slightly

lower when applying AFEOA-BB in the black-box setting.
This is due to the performance discrepancy between the victim
model and the surrogate model FS , which means that the
most effective noise image selected by hω to attack FS is
not necessarily also the most effective nose image in attacking
the victim model. Nevertheless, hω still successfully selects the
most effective noise image for over 81% watermarked images.

Another interesting finding is that, in some cases, the
percentage of watermarked images for which hω succeeds in
selecting the most effective noise image is lower than the
corresponding !ACC. For instance, when applying AFEOA-
WB to attack SS on COCO, the percentage of watermarked
images reported in Table X is 0.93, whereas the corresponding
!ACC is 0.99. This is because even though hω fails to select the
most effective noise image for a watermarked image Iw, the
selected noise image may still be able to successfully attack
Iw due the high effectiveness of each noise image in P .

APPENDIX G
CASE STUDY

In this section, we conduct a case study to show the attacked
images produced by each attack method, as well as the noise
images used by our methods to perform the attacks.

Fig. 10(a) and Fig. 10(b) show the results of attacked images
on COCO and ImageNet, respectively. Fig. 10(b) does not
include the results on SS and TR, because ImageNet does not
provide image captions for SS and TR to produce watermarked
images. Each column in Fig. 10 shows the results on one
original image for a victim model, where rows 1 and 2 display
the original image and the watermarked image, respectively,
and rows 3 to 14 show the attacked images produced by dif-
ferent attack methods. The attacked images generated by our
methods are framed by blue and red rectangles in Fig. 10(a)
and Fig. 10(b), respectively. We also show the noise images
used to produce the attacked images within the blue and red
rectangles in Fig. 11(a) and Fig. 11(b), respectively. Each noise
image is visualized in the same way as in [43].

For each attack method, we set the noise amount to achieve
the highest PSNR while obtaining a !ACC of at least 0.8. The
numbers below the attacked images show the PSNR achieved
by each attack method. An underlined PSNR means the
corresponding attack method cannot achieve a !ACC ↑ 0.8.
In this case, we report the highest PSNR when the attack
method can successfully attack the watermarked image. The
bold green-colored PSNR in each column of Fig. 10 indicates
the highest PSNR (i.e., the best image quality) of the attacked
images when attacking the corresponding victim model in the
same column.

As shown in Fig. 10, most of the attacked images produced
by Gaussian noise, Gaussian blur and JPEG have a small
PSNR, and the quality of these images is not very satisfactory.
In addition, the attacked images produced by WMAttacker,
Diffpure, RinseDiff and RinseVAE tend to be over-smoothed
and thus also have a small PSNR. Compared with the baseline
methods, our methods achieve the best image quality and a
higher PSNR. This is because the L2-norm of a noise image
used in our methods is upper-bounded by the threshold ω,
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which effectively limits the damage to image quality caused
by adding the noise image.

Another interesting finding is that, as shown in columns 3
and 7 of Fig. 11(a), the noise images for attacking HD and
CRIW exhibit similar patterns (e.g., diagonal lines). A similar
phenomenon also appears in columns 1 and 5 of Fig. 11(b).
We explain the reasons for this phenomenon as follows. First,
according to [16], CRIW adopts HD as the base watermarking
model. This is, CRIW uses the original encoder of HD as
its encoder with only a few modifications and it “smooths”
the original decoder of HD as its decoder by applying the
randomized smoothing technique [62]. Second, since HD and
CRIW use virtually the same encoder, the watermarked images
they generate have a very similar distribution of watermark
patterns. Third, although the decoders of HD and CRIW do
not extract watermarks in exactly the same way, they both
aim at recognizing the watermark patterns embedded in the
watermarked images. Since the watermark patterns embedded
by HD and CRIW have a similar distribution, their decoders
work in a similar way to recognize these watermark patterns.
Last, when applying our methods, the noise images used to
attack HD and CRIW are not only trained on the watermarked
images with a similar distribution of watermark patterns, but
are also trained to disrupt the decoders that recognize the
watermark patterns in a similar way. Thus, the mechanisms
of effect of these noise images to attack HD and CRIW are
similar, which results in their similar visual patterns.
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Fig. 10. The case study results on COCO and ImageNet. All the watermarked images are successfully attacked by corresponding attacks. FEOA-WB and
AFEOA-WB are not applicable to attack DDS, because the decoder of DDS is not differentiable.
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Fig. 11. The noise images corresponding to the attacked images generated by our methods in Fig. 10.
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