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Abstract—Deep neural networks (DNNs) are well-known to be
susceptible to many universal adversarial perturbations (UAPs),
where each UAP can successfully attack many images when
added to the input. In this paper, we explore the existence of
diversified UAPs, each of which successfully attacks a large but
substantially different set of images. Since the sets of images
successfully attacked by different UAPs are often complementary
to each other, strategically selecting the most effective UAP to
attack each new image could maximize the overall coverage of
successful attacks. Following this insight, we propose a novel
attack framework named boosting universal adversarial attack.
The key idea is to simultaneously train a set of diversified UAPs
and a selective neural network, such that the selective neural
network can choose the most effective UAP when attacking a
new target image. Due to the simplicity and effectiveness of the
proposed boosting attack framework, it can be generally used to
significantly boost the attack effectiveness of many classic single-
UAP methods that only use a single UAP to attack all target
images. Meanwhile, the boosting attack framework is also able
to perform real-time attacks as it does not require any addi-
tional training or fine-tuning when attacking new target images.
Extensive experiments demonstrate the outstanding performance
of the proposed boosting attack framework.

Index Terms—Universal adversarial perturbation, deep neural
network, boosting attack.

I. INTRODUCTION

DEEP neural networks (DNNs) have achieved notable
milestones in various computer vision tasks [2]–[5].

Despite their success, DNNs are known to be susceptible
to universal adversarial perturbation (UAP) [6] – a single
carefully crafted, imperceptible perturbation [7]–[12] that,
when added to target images, can successfully attack the
majority of them by altering a victim DNN’s predictions
on them. For example, many studies [6], [13]–[17] have
proposed to generate a UAP to make image classifiers produce

This work was done by Shaoxin Li during his visit at McMaster University
when supervised by Lingyang Chu. This work is an extension of our
previously published conference paper [1]. This work is supported in part by
the NSERC Discovery Grant program (RGPIN-2022-04977), in part by the
Natural Science Foundation of Chongqing (Innovation and Development Joint
Fund) under grant CSTB2023NSCQ-LZX0149, in part by the Fundamental
Research Funds for the Central Universities under grant 2023CDJKYJH019,
and in part by the scholarship from China Scholarship Council. (Correspond-

ing author: Xiaofeng Liao)
S. Li and X. Liao are with the College of Computer Science,

Chongqing University, Chongqing, 400044, China (email: {shaoxin.li,
xfliao}@cqu.edu.cn).

X. Che and L. Chu are with the Department of Computing and Soft-
ware, McMaster University, Hamilton, L8S 4L8, Canada (email: {chex5,
chul9}@mcmaster.ca).

This work has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the authors. The material includes the
appendices on additional experimental results of the proposed methods. This
material is 3.4 MB in size.

For each
image

For each
image

Perturbation !!" " + !!

Target images ! Attacked images

For each
image

Solve an optimize
problem

UAP !"

UAP !" UAP !#

(b.1) Not diversified (b.2) Moderately diversified (b.3) Highly diversified

UAP !# UAP !$ UAP !%

Attacked imagesTarget images !

Target images ! Attacked images" " + !

UAP !

"
Selective
neural

network $&

" + !#" = 0.1
UAP !"

" = 0.9
UAP !#

(a) Single-UAP methods
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(b) Boosting universal adversarial attack method when K = 2

Fig. 1. The overview diagrams of single-UAP methods and the proposed
boosting universal adversarial attack method. (a) The single-UAP methods
attack each target image by adding the same UAP ω. (b) The boosting attack
method attacks each target image via adding the UAP chosen from a set
of K diversified UAPs by the selective neural network gω . The three Venn
diagrams in (b.1), (b.2) and (b.3) illustrate the sets of target images that
can be successfully attacked by the UAPs ω1 and ω2 when they are not
diversified, moderately diversified and highly diversified, respectively. Each
elliptical region in these Venn diagrams represents a set of target images in
the original image space that a UAP can successfully attack. Each triangle
represents a target image in the set.

erroneous classification results. As another example, the same
idea has also been adopted by [18]–[20] to generate universal
adversarial patches against aerial detectors.

As demonstrated by many prior works [13]–[17], [21], a
UAP not only generalizes well in attacking different target
images [13], [16], [21] but also transfers well in attacking
different victim DNNs [14], [15], [17]. Consequently, many
classic single-UAP methods [6], [13]–[17], [21]–[25] train a
single UAP and then directly apply it to attack new target
images during the attack stage, as shown in Fig. 1(a). This
enables extremely fast adversarial attacks and poses a great
potential threat to the security of DNNs.

However, it is often challenging to generate a single UAP
that can successfully attack a wide variety of target images.
Due to the large diversity of image features and the non-
linearity nature of DNNs, a UAP that succeeds in attacking
one group of images may fail when attacking many other
images [22], [24]. As a result, the single-UAP methods [6],
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[13]–[17], [21]–[25] that apply a single UAP to all target
images generally struggle to achieve high attack effectiveness,
especially when the magnitude (e.g., infinity norm) of the UAP
is limited to be small by the constraint of imperceptibility.

On the other hand, some prior studies [6], [22], [24] have
demonstrated that DNNs are susceptible to not only a single
but a large number of UAPs. This indicates the existence of
many diversified UAPs, each capable of successfully attacking
a large set of images, with these sets often being substantially
different and complementary to each other. Therefore, strate-
gically selecting the most effective UAP to attack each new
target image could maximize the overall attack coverage by
combining the strengths of individual UAPs. Such an approach
may significantly boost attack effectiveness and thus pose an
even greater threat to the security of DNNs.

To verify and study the above security threat, we propose
a novel attack framework named boosting universal adver-
sarial attack, or boosting attack for short. As shown in
Fig. 1(b), the key idea is to find a set of K diversified UAPs
and attack each new target image by the UAP from the set
that is most effective in attacking it. For each attack, the most
effective UAP is selected by a selective neural network that is
trained simultaneously with the K diversified UAPs. As such,
if each of the K UAPs can successfully attack a substantially
different set of images, then the boosting attack framework
will significantly improve attack effectiveness because it can
successfully attack the union of the images that are success-
fully attacked by each of the K UAPs. This is illustrated by
the Venn diagrams in Figs. 1(b.2) and 1(b.3). Meanwhile, such
a boosting attack can also be conducted in real-time because
compared to classic single-UAP methods, the only additional
overhead of performing a boosting attack is a forward pass of
the target image through the selective neural network, which
only takes about 2.4 milliseconds on an NVIDIA RTX 3060
GPU.

To the best of our knowledge, the boosting attack frame-
work is a novel universal adversarial attack framework that
has not been systematically studied in the literature. As to
be discussed in Section II, most existing UAP-based attack
methods [6], [13]–[17], [21]–[25] focus on finding a single
UAP that successfully attacks the largest group of images. As
a result, they pay less attention to finding and utilizing multiple
diversified UAPs, thus missing the opportunity to harness the
power of boosting universal adversarial attacks.

In this paper, we propose a novel boosting universal ad-
versarial attack framework against DNNs, which significantly
enhances the attack effectiveness of single-UAP methods while
maintaining a fast attack speed in milliseconds. We make the
following contributions.

First, in order to obtain a set of K diversified UAPs, we de-
fine the problem of finding diversified universal adversarial
perturbations (FDUAP) as a clustering problem. The goal of
the FDUAP problem is to identify K clusters of images while
generating the corresponding UAP for each of the K clusters,
such that the number of successfully attacked images in each
cluster is maximized.

Second, we propose a novel attack method called homo-
geneous boosting attack (HoBA) to address the FDUAP
problem. In HoBA, by introducing a selective neural network

to partition images into K clusters, we formulate the FDUAP
problem as an optimization problem, where the K diversified
UAPs are trained by minimizing the same loss function for
maximum attack effectiveness. Then, we solve this optimiza-
tion problem by a gradient-based method to simultaneously
train the K UAPs and the selective neural network in an end-
to-end manner. During the attack stage, the trained selective
neural network can efficiently select the most effective UAP
from the trained K UAPs to attack each new target image,
thus enabling both effective and fast boosting attacks.

Third, to further improve the effectiveness of the boost-
ing attack, we extend HoBA to an advanced version called
heterogeneous boosting attack (HeBA). HeBA incorporates
different types of loss functions to train the set of diversified
UAPs, such that the UAPs trained by minimizing different loss
functions are more diversified. To achieve this, we extend the
optimization problem of HoBA to a new optimization problem
and efficiently solve it by proposing a new training method.
Due to the enhanced diversity of the UAPs trained by HeBA,
the sets of images successfully attacked by these UAPs are
more distinct. They have less overlap and collectively cover
a wider range of images, as illustrated by the comparison of
the Venn diagrams in Figs. 1(b.2) and 1(b.3), and thus could
offer higher attack effectiveness.

Last, we conduct extensive experiments to evaluate the
attack performance of the proposed boosting attack frame-
work. The experimental results indicate that both HoBA and
HeBA significantly improve the attack effectiveness of single-
UAP methods while maintaining a fast attack speed in mil-
liseconds, which demonstrates the superiority of the boosting
attack framework. Our source code is at https://github.com/
ShaoxinLi/Boosting-Universal-Adversarial-Attack.

II. RELATED WORKS

To the best of our knowledge, how to conduct boosting
universal adversarial attacks on deep neural networks (DNNs)
is a novel problem that has not been systematically studied
in the literature. It is broadly related to the following two
categories of existing adversarial attacks on DNNs.

Image-dependent attacks. Given a target image, image-
dependent attacks [26]–[29] perturb the target image by adding
a specially tailored perturbation to it, such that DNNs will
make an incorrect prediction on the perturbed image. In
particular, two subcategories of image-dependent attacks have
been studied. The first one is optimization-based methods [26],
[27], which generate a perturbation for every target image by
solving an optimization problem. As a result, they tend to be
computationally expensive and cannot achieve fast attacks on
new target images [24], [30]. The second one is generator-

based methods [28], [29], which train a DNN-based generator
that maps a target image into a unique perturbation to attack
the target image. Since generating a perturbation only involves
a forward pass of the target image through the generator, these
methods often achieve a much faster attack speed than the
optimization-based methods.

Image-agnostic attacks. Instead of crafting a unique per-
turbation for each target image, the image-agnostic attacks
use a universal adversarial perturbation (UAP) to conduct fast

https://github.com/ShaoxinLi/Boosting-Universal-Adversarial-Attack
https://github.com/ShaoxinLi/Boosting-Universal-Adversarial-Attack
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attacks. This is achieved by training the UAP to successfully
attack as many images as possible and then directly adding
the trained UAP to each new target image to launch attacks.

The existence of UAP was first revealed in [6]. Afterward,
many UAP-based attack methods were developed for different
application contexts. The gradient-based methods [13], [16],
[17], [21], [23]–[25] directly optimize a UAP by stochastic
gradients to achieve superior attack effectiveness. The class-
discriminative methods [30], [31] attempt to craft a UAP
specific to images of a chosen group of classes, while hav-
ing limited influence on the other classes. The GAN-based
methods [22], [29] implicitly model the distribution of UAPs
by training a generative adversarial network (GAN) [32]. The
data-free methods [14], [24], [25] attempt to generate a UAP
without using any training images or using only artificial
images. The ensemble-based methods [15], [33] focus on
improving the across-model transferability of UAP by training
a UAP to simultaneously attack multiple DNNs.

Despite the variety of the above UAP-based attack methods,
they can all be characterized as single-UAP methods, which
perform fast attacks by using a single UAP to attack all
target images. However, the number of images that can be
successfully attacked by a single UAP is often limited, which
reduces the attack effectiveness of these methods [24].

Different from the existing works, we develop a novel
boosting attack framework for universal adversarial attacks.
The key idea is to find a set of K diversified UAPs and attack
each new target image with the most effective UAP chosen by
a well-trained selective neural network. As demonstrated by
the extensive experiments in Section VI, the boosting attack
framework significantly improves the attack effectiveness of
many classic single-UAP methods [14], [21], [22], [24], [30],
and the resulting boosting attack methods even achieve su-
perior performance than the image-dependent generator-based
methods [28], [29]. Meanwhile, a boosting attack can also
be conducted in milliseconds since the only extra overhead
compared to the single-UAP methods is a forward pass of the
target image through the selective neural network.

III. THE PROBLEM OF FINDING DIVERSIFIED UAPS

In this section, we introduce the problem of finding diver-
sified universal adversarial perturbations. Notations frequently
used throughout this paper are summarized in Table I.

Following the settings of prior studies [6], [13]–[17], [21]–
[25], we focus on the representative image classification task
of DNNs in this work. Denote by X = {xi}Ni=1 a set of N
training images with a set of class labels denoted as C =
{1, 2, . . . , C}, the victim DNN model to be attacked, denoted
by f , is trained on X to perform image classification.

For a target image x, we denote the class label of x predicted
by f as lf (x) → C. Denote by ω a universal adversarial
perturbation (UAP) with the same dimension as x, an attacker
performs an attack by adding ω to x. If lf (x) ↑= lf (x + ω),
then we say x is successfully attacked by ω. We call a UAP
in short as a perturbation when the context is clear.

Now, we define the problem of finding diversified UAPs.

Definition 1. Given a victim DNN f to be attacked, the

training dataset X = {xi}Ni=1 used to train f , and a real-

TABLE I
THE FREQUENTLY USED NOTATIONS AND THEIR DESCRIPTIONS.

Notation Description

x A training image.
X The set of training images.
N The number of training images in X .
C The set of image class labels.
f The victim DNN model.

lf (x) The class label of x predicted by f .
ω A universal adversarial perturbation.
P The set of universal adversarial perturbations.
K The number of universal adversarial perturbations in P .
ε The real-valued perturbation magnitude.
S A cluster of images.
S The set of non-overlapping clusters of images.

L(x, ω) An attack function used to train perturbations.
A The set of attack functions.
H The number of attack functions in A.
R The number of perturbations trained by each attack function in A.
gω The selective neural network parameterized by ϑ.

Pω(x) The K-dimensional probability vector output by gω .
E The number of training epochs.
I The total number of training iterations.
B The batch size.
tg The time cost of computing Pω(x) using gω .
tl The time cost of computing the value of L(xi, ωj).
tω The time cost of updating ϑ by the ADAM optimizer.
d The number of parameters (i.e., pixels) of each perturbation.

valued perturbation magnitude ε > 0. The problem of finding
diversified universal adversarial perturbations (FDUAP) is to

find a set of K perturbations, denoted by P = {ω1, . . . , ωK},

and a set of K non-overlapping clusters of images in X ,

denoted by S = {S1, . . . , SK}, such that

1) S1 ↓ . . . ↓ SK = X and Si ↔ Sj = ↗ when i ↑= j;

2) in each cluster Si → S , the number of images successfully

attacked by ωi → P is maximized; and

3) for each ωi → P , ↘ωi↘→ ≃ ε.

The key idea of the above FDUAP problem is to find K
clusters of images while generating the corresponding UAP
for each of the clusters, such that the number of successfully
attacked images in each cluster is maximized. The constraint
↘ωi↘→ ≃ ε limits the infinity norm of ωi by a small pertur-
bation magnitude ε such that ωi is visually imperceptible to
humans [22], [30]. Since each perturbation is trained to attack
a different cluster of images, the sets of images successfully
attacked by different perturbations are likely to be different.
Therefore, we regard these perturbations as diversified.

In the following two sections, we propose two different
methods to solve the FDUAP problem. The first method named
homogeneous boosting attack (HoBA) uses the same loss
function to train the perturbations in P ; and the second method
named heterogeneous boosting attack (HeBA) enhances the
diversity of perturbations in P by using different types of loss
functions together to train the perturbations in P .

We implement both HoBA and HeBA in the white-box

setting and the black-box setting, respectively. The white-box
setting allows an attacker to access the model architecture and
parameters of the victim DNN f . The black-box setting adopts
the setting of transfer adversarial attacks in the literature [16],
[17], [22], [30], which only allows the attacker to use f as a
black box without knowing its model architecture or parame-
ters. Following the routine of transfer adversarial attacks [16],
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Algorithm 1: Solving the HoBA-opt problem
Inputs : The victim DNN f , the training dataset X ,

the number of perturbations K, and the
perturbation magnitude ε.

Outputs: The trained perturbations in P and the
trained selective neural network gω.

1 Initialize each perturbation in P by zeros.
2 Initialize ϑ by the Kaiming initialization [35].
3 do
4 Sample a batch of images XB from X .
5 Compute the loss on XB by (1).
6 Compute the gradients with respect to P .
7 Update P by the projected gradient descent [36].
8 Repeat step-4 to sample a new batch of XB .
9 Compute the loss on XB by (1).

10 Compute the gradients with respect to ϑ.
11 Update ϑ by the ADAM optimizer [37].
12 while not converge;
13 return P and gω.

[17], [22], [30], we use a surrogate DNN to train the learnable
parameters of HoBA and HeBA in the black-box setting.

IV. HOMOGENEOUS BOOSTING ATTACK

In this section, we present the homogeneous boosting attack
(HoBA) to address the FDUAP problem.

Denote by L(xi, ωj) a loss function that is used to train the
perturbations in P , where xi is the target image and ωj → P is
the perturbation used to attack xi. This function measures the
similarity between the predictions of xi made by the victim
DNN f before and after ωj is added to xi [13]. A smaller
value of L(xi, ωj) indicates f is more likely to change its
prediction on xi, thus the attack launched by adding ωj to xi

is more likely to be successful [13], [30]. In the remainder of
this paper, we refer to the loss function L(xi, ωj) as attack
function to distinguish it from the final loss functions of the
proposed boosting attack methods.

Since many effective attack functions have been proposed
by different single-UAP methods in the literature [34], it is
beyond the scope of this work to develop a new one. Our
proposed boosting attack methods are generally compatible
with the existing attack functions, and we adopt five attack
functions proposed by the existing works [14], [21], [22], [24],
[25] in our experiments.

To conduct HoBA based on the single attack function
L(xi, ωj), we formulate the FDUAP problem as the following
optimization problem named HoBA-opt problem:

min
P,ω

N∑

i=1

K∑

j=1

Pω(xi)jL(xi, ωj),

s.t. ↘ωj↘→ ≃ ε, ⇐j → {1, . . . , K},

(1)

where Pω(xi)j represents the probability for a target image
xi to be a member of a cluster Sj → S , and the constraint
↘ωj↘→ ≃ ε follows the condition 3) in Definition 1.

We compute Pω(xi)j by a deep neural network gω named
selective neural network that is parameterized by ϑ. Specif-

Algorithm 2: Conducting a boosting attack
Inputs : The trained perturbations in P , the trained

selective neural network gω and a new target
image xnew.

Output: The attacked image x↑
new.

1 Compute: Pω(xnew) = gω(xnew).
2 Select: j↓ ⇒ argmax

j
Pω(xnew)j .

3 Perturb: x↑
new ⇒ xnew + ωj→ .

4 Clip the pixel values of x↑
new to the range of [0, 255].

5 return x↑
new.

ically, gω maps a target image xi to a K-dimensional proba-
bility vector Pω(xi), where the j-th entry is Pω(xi)j .

For each target image xi → X , we assign xi to the cluster
Sj with the maximum probability Pω(xi)j . This partitions the
images in X into a set of K non-overlapping clusters, that
is, S = {S1, . . . , SK}. Since all the images in a cluster Sj

is attacked by the corresponding perturbation ωj , solving the
HoBA-opt problem finds the solutions P and ϑ that maximize
the number of successfully attacked images in each of the K
image clusters.

We solve the HoBA-opt problem by a training algorithm
that alternately optimizes P and ϑ until the objective function
in (1) becomes stable. Specifically, in each training iteration,
we first update the K perturbations in P simultaneously by the
projected gradient descent (PGD) [36] to handle the convex
constraints ↘ωj↘→ ≃ ε, and then we update ϑ by the ADAM
optimizer [37], which is a classic method to train deep neural
networks. The details of the proposed training algorithm are
summarized in Algorithm 1.

Time complexity of Algorithm 1. Denoted by N the
number of training images, by E the number of training epochs
and by B the batch size. The total number of training iterations
I = NE/B. The time cost of Algorithm 1 mainly consists of
the time costs of the I training iterations, in each of which
we use a batch of images XB to optimize P and ϑ. Denoted
by tg the time cost of computing Pω(xi) using gω, by tl the
time cost of computing the value of L(xi, ωj), and by d the
number of parameters (i.e., pixels) of each perturbation in P ,
the major time cost of each training iteration is analyzed as
follows.

In step 5, performing a forward pass to compute the loss∑
K

j=1 Pω(xi)jL(xi, ωj) for each image in XB takes tg + tlK
time. Thus, the time cost of step 5 to forward pass B images is
B(tg+tlK). In step 6, the time cost of computing the gradients
with respect to P for XB via backpropagation is roughly two
times that of the forward passes in step 5, which is 2B(tg +
tlK). In step 7, the time cost of updating P by the PGD is
proportional to the number of parameters of the perturbations
in P . Thus, the time cost of step 7 can be approximated by
dK. Steps 9 and 10 have the same time costs as steps 5 and
6, respectively. In step 11, the time cost of updating ϑ by the
ADAM optimizer is proportional to the number of parameters
of gω. We denote this time cost as tω.

Summing up the time costs of the I training iterations,
the time complexity of Algorithm 1 is I(B(6tg + 6tlK) +
dK + tω) ⇑ O

(
I(B(tg + tlK) + dK + tω)

)
. Since d is a
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constant that is often dominated by tl, tω is also a constant
because the number of parameters of gω is fixed and we
have I = NE/B, this time complexity can be simplified to
O
(
NE(tg + tlK)

)
. Since N and E are often constants and

tg and tl are not affected much by K, the time complexity
of Algorithm 1 grows linearly with K. As shown by our
experiments in Section VI, HoBA can significantly improve
the attack effectiveness of the single-UAPs methods [14],
[21], [22], [24], [25] by using only a small set of K = 5
perturbations, which indicates that the extra training time cost
of HoBA is a cost-effective tradeoff.

Algorithm 1 trains P and gω in the white-box setting, which
requires access to the architecture and parameters of the victim
DNN f to compute gradients. This approach can be directly
extended to the black-box setting by first training a surrogate
DNN of f and then using the architecture and parameters of
the surrogate DNN to train P and gω.

Given the trained P and gω, HoBA attacks a new target
image xnew following the steps in Algorithm 2. We analyze
the time complexity of Algorithm 2 as follows.

Time complexity of Algorithm 2. In step 1, the time cost
of computing Pω(xnew) using gω is tg . In step 2, the time cost
of selecting the most effective perturbation ωj→ by performing
an argmax operation for K elements is K. In step 3, the time
cost of perturbing xnew by adding ωj→ is d. In step 4, the
time cost of clipping the pixel values of the attacked image
is also d. To sum up, the time complexity of Algorithm 2
is tg + K + 2d ⇑ O

(
tg + K + d

)
. This indicates the fast

attack speed of HoBA because the time cost tg of feeding
xnew into gω for a single forward pass is very small, which
takes around 2.4 milliseconds on an NVIDIA RTX 3060 GPU
in our experiments; K is small and usually not larger than
100; and the time cost d of adding the selected perturbation
or clipping pixel values is also small, typically on the order
of microseconds.

Meanwhile, HoBA also achieves good attack performance
because of the high diversity of the perturbations in P . If each
perturbation can successfully attack a substantially different
set of target images, then HoBA will successfully attack the
union of the images that are successfully attacked by each of
the perturbations in P , as illustrated by the Venn diagram in
Fig. 1(b.2).

The perturbations trained by HoBA are diversified because
each of these perturbations is trained to focus on attacking
a different cluster of images. To further enhance the attack
effectiveness, we extend HoBA to an advanced version, which
uses multiple attack functions together to train more diversified
perturbations. This could offer higher attack effectiveness
because the sets of target images successfully attacked by these
perturbations are more distinct, which have less overlap and
collectively cover a wider range of images, as illustrated by
the Venn diagram in Fig. 1(b.3).

V. HETEROGENEOUS BOOSTING ATTACK

In this section, we first introduce how to extend HoBA to
the heterogeneous boosting attack (HeBA) by formulating a
new HeBA-opt problem. Then, we describe how to solve the
HeBA-opt problem and conduct HeBA attacks.

A. Formulating the HeBA-opt Problem

The key idea of HeBA is to use a number of H different
attack functions to train a more diverse set of perturbations.
We use each attack function to train a set of R perturbations,
which results in a total number of H⇓R perturbations, denoted
by P = {ωh

r
| h → {1, . . . , H}, r → {1, . . . R}}. This approach

significantly enhances the diversity of the perturbations in P ,
because the perturbations trained by different attack functions
often tend to exhibit substantial variation [38].

Denote by A = {Lh(xi, ωhr ) | h → {1, . . . , H}} the set of
attack functions, where each function Lh(xi, ωhr ) measures the
similarity between the predictions of xi made by the victim
DNN f before and after ωh

r
is added to xi. A smaller value of

Lh(xi, ωhr ) indicates f is more likely to change its prediction
on xi, thus the attack launched by adding ωh

r
to xi is more

likely to be successful. In our experiments, the set A consists
of the five different attack functions proposed by the existing
single-UAP methods [14], [21], [22], [24], [25].

To conduct HeBA based on the set of attack functions A,
we extend the HoBA-opt problem to the following HeBA-opt
problem:

min
P,ω

N∑

i=1

H∑

h=1

R∑

r=1

Pω(xi)
h

r
Lh(xi, ω

h

r
),

s.t.
∥∥ωh

r

∥∥
→ ≃ ε, ⇐h → {1, . . . , H}, ⇐r → {1, . . . , R},

(2)

where Pω(xi)hr presents the probability for a target image xi to
be a member of a cluster in S , and the constraint

∥∥ωh
r

∥∥
→ ≃ ε

follows the condition 3) of Definition 1.
To compute Pω(xi)hr , we extend the selective neural network

gω(xi) to produce a (H ⇓ R)-dimensional probability vector
and reshape it to a probability matrix Pω(xi) with H rows
and R columns. Pω(xi)hr is the entry in the h-th row and r-th
column of Pω(xi).

Similar to HoBA, we can also use the probability matrix
Pω(xi) to partition X into a set of non-overlapping clusters,
denoted by S = {Sh

r
| h → {1, . . . , H}, r → {1, . . . , R}}. This

is done by assigning each image xi → X to the cluster Sh

r

with the maximum probability Pω(xi)hr in Pω(xi). Solving the
HeBA-opt problem finds the solutions P and ϑ that maximize
the number of successfully attacked images in each image
cluster in S .

Compared to HoBA, the perturbations of HeBA are not only
trained to attack different clusters of images, but also trained
with different attack functions. This enables the generation
of more diversified perturbations, which can further improve
attack effectiveness.

B. Solving the HeBA-opt Problem

The HeBA-opt problem in (2) can be solved by Algorithm 1,
which was proposed in the conference version of our paper [1].
Denoted by tg the time cost of computing Pω(xi) and by tl
the worst-case time cost of computing the value of Lh(xi, ωhr ).
Following the same time complexity analysis as in Section IV,
the time complexity of solving the HeBA-opt problem by
Algorithm 1 is O

(
NE(tg + tlHR)

)
.

In this extended version of our paper, we propose a more
efficient new method to solve the HeBA-opt problem, which
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uses the Gumbel softmax trick [39], [40] to significantly reduce
the time complexity of solving the HeBA-opt problem, thereby
improving the training efficiency of HeBA. This new method
consists of the following two steps.

First, we rewrite the term
∑

H

h=1

∑
R

r=1 Pω(xi)hrLh(xi, ωhr )
in (2) by its expectation form

Ez↔gω(xi)

[ H∑

h=1

(zh1 +. . .+zh
R
)Lh(xi, ω

h

1 zh1 +. . .+ωh
R
zh
R
)
]
, (3)

where z is a (H⇓R)-dimensional one-hot vector that models a
categorical variable following the distribution of Pω(xi). Since
Pω(xi) = gω(xi), we write z ⇑ gω(xi). We reshape z as a
discrete matrix with H rows and R columns in the same way
as we reshaped Pω(xi) into a matrix. Denote by zh

r
the entry

in the h-th row and r-th column of the matrix z, zh
r

= 1 means
ωh
r
→ P is selected by gω to attack xi.

Second, we use the Gumbel softmax trick to approximate
the discrete matrix z by a smooth matrix s. This approximates
each entry zh

r
in z by

sh
r

=
exp

((
logPω(xi)hr + ϖh

r

)
/ϱ

)
∑

H

a=1

∑
R

b=1 exp
(
(logPω(xi)ab + ϖa

b
)/ϱ

) , (4)

where ϖ is a matrix of size H ⇓ R, with each entry ϖh
r

being
an independent random variable following the Gumbel(0, 1)
distribution [39], and ϱ > 0 is the temperature parameter that
controls the smoothness of sh

r
. When ϱ gets closer to zero, the

entries in s get closer to 0 or 1.
Through the above two steps, we convert the original HeBA-

opt problem into

min
P,ω

N∑

i=1

Eε↔Gumbel(0,1)

[ H∑

h=1

(sh1 + . . . + sh
R
)

Lh(xi, ω
h

1 sh1 + . . . + ωh
R
sh
R
)
]
,

s.t.
∥∥ωh

r

∥∥
→ ≃ ε, ⇐h → {1, . . . , H}, ⇐r → {1, . . . , R},

(5)

which is solved by the gradient-based method in Algorithm 3.
The key idea of Algorithm 3 is to alternatively update P and

ϑ until the objective function in (5) becomes stable. In each
training iteration, we first update all the H ⇓ R perturbations
in P by the PGD and then update ϑ by the ADAM optimizer.
Following the routine of the Gumbel softmax trick [39], for
each update, the value of the objective function is computed
on a batch of images XB and a matrix ϖ that is sampled from
Gumbel(0, 1). Then, we compute the gradients by standard
backpropagation. The temperature ϱ is gradually reduced to
avoid introducing a large variance in the gradients computed
early in the training and to make the smooth matrix s closer
to discrete as the training proceeds [39], [40].

Time complexity of Algorithm 3. The time cost of Algo-
rithm 3 mainly consists of the time costs of the I = NE/B
training iterations, in each of which we use a batch of images
XB to optimize P and ϑ. We analyze the major time cost of
each training iteration as follows.

In step 7, the time cost of performing a forward pass to
compute Eε↔Gumbel(0,1)[·] for each image in XB is tg+HR+
tlH because it takes tg time to compute Pω(xi) using gω,
HR time to compute the entries in s by (4) and tlH time to

Algorithm 3: Solving the HeBA-opt problem
Inputs : The victim DNN f , the training dataset X ,

the set of H attack functions A, the number
of perturbations R for each attack function,
and the perturbation magnitude ε.

Outputs: The trained perturbations in P and the
trained selective neural network gω.

1 Initialize each perturbation in P by zeros.
2 Initialize ϑ by the Kaiming initialization [35].
3 Initialize the temperature parameter ϱ = 1.
4 Set the number of training iterations t = 1.
5 do
6 Sample a batch of images XB from X and sample

ϖ from the distribution Gumbel(0, 1).
7 Compute the loss in (5) using XB and ϖ.
8 Compute the gradients with respect to P .
9 Update P by the projected gradient descent [36].

10 Repeat step-6 to sample new XB and ϖ.
11 Compute the loss in (5) using XB and ϖ.
12 Compute the gradients with respect to ϑ.
13 Update ϑ by the ADAM optimizer [37].
14 If t mod 2000 = 0 then update ϱ by

ϱ ⇒ max
(
0.01, exp(⇔1e ⇔ 4 · t)

)

15 Update t ⇒ t + 1.
16 while not converge;
17 return P and gω.

compute Lh(xi, ωh1 sh1+. . .+ωh
R
sh
R
) for H times. Thus, the time

cost of step 7 to forward pass B images is B(tg +HR+tlH).
In step 8, the time cost of computing the gradients of P is
roughly two times that of the forward passes in step 7, which
is 2B(tg + HR + tlH). In step 9, the time cost of updating
P by the PGD is proportional to the number of parameters of
the perturbations in P , which can be approximated by dHR.
Steps 11 and 12 have the same time cost as steps 7 and 8,
respectively. In step 13, the time cost of updating ϑ by the
ADAM optimizer is proportional to the number of parameters
of gω and we denote this time cost as tω.

Summing up the time costs of the I training iterations,
the time complexity of Algorithm 3 is I(B(6tg + 6tlH +
6HR)+dHR+tω) ⇑ O

(
I(B(tg +tlH +HR)+dHR+tω)

)
.

Since d is a constant that is often dominated by tl, R is
typically small and often not exceeding 20, tω is also a constant
because the number of parameters of gω is fixed and we
have I = NE/B, this time complexity can be simplified to
O
(
NE(tg + tlH)

)
. Since N and E are often constants and

tg and tl are not affected much by H , the time complexity of
Algorithm 3 grows linearly with respect to H . This indicates
the higher efficiency of Algorithm 3 in solving the HeBA-opt
problem compared to Algorithm 1. We compare the efficiency
of Algorithm 1 and Algorithm 3 in practice in Appendix A.

Algorithm 3 trains P and gω in the white-box setting. We
extend it to the black-box setting by using a surrogate DNN
in the same way as we extended Algorithm 1. After training,
the process of conducting a boosting attack by HeBA is the
same as that of HoBA described in Algorithm 2, and thus we
omit it here to avoid redundancy.
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VI. EXPERIMENTS

In this section, we systematically evaluate the performance
of the proposed boosting attack framework. In particular, we
wish to answer the following research questions. Q1: How
effective is our framework in the white-box setting? Q2:
How effective is our framework in the black-box setting?
Q3: How effective is our framework against typical defenses?
Q4: How fast is the boosting attack? Q5: How diversified
are the UAPs generated by our framework? Q6: Does the
diversity of UAPs relate to the attack effectiveness? Q7: How
does our framework perform when using different numbers of
UAPs? Q8: How does our framework perform compared to
the single-UAP methods that use more training images? Q9:
What is the distribution of images attacked by different UAPs?
Q10: How does our framework perform when using different
model architectures for the selective neural network gω? Q11:
What is the training time of different attack methods? Q12:
How effective is our framework in the objection detection
task? Q13: How effective is our framework in the semantic
segmentation task? Q14: What is the potential limitation of
our framework? Due to the page limit, we answer Q9-Q14 in
Appendices B-G of the supplementary material.

A. Experimental Settings

Baselines. We compare the proposed boosting attack frame-
work with five representative single-UAP methods, including
UAT [21], DF-UAP [25] written in short as DF, Cosine-
UAP [24] written in short as COS, NAG [22], and TRM-
UAP [14] written in short as TRM. We also compare
with two image-dependent generator-based methods, including
GAP [29] and TDA [28].

Our methods. For HoBA, we apply it on each of the above
single-UAP methods by adopting the same attack function
L(xi, ωj) as the single-UAP method when solving the HoBA-
opt problem in (1). To be specific, we implement HoBA in
the following two different types.
• HoBA type 1. We first run each single-UAP method to

generate a set of K UAPs. For UAT, DF, COS and TRM,
we independently run each method for K times. For NAG,
since it trains a generator to produce UAPs, we indepen-
dently sample K times using the trained generator. After
obtaining the K UAPs, we regard them as a constant set
of perturbations P , and solve the HoBA-opt problem in (1)
to train the selective neural network gω. That is, we do not
execute steps 4-7 when calling Algorithm 1. Thus, this type
can be viewed as an ablated version of HoBA since it does
not train P and gω together.

• HoBA type 2. This is the complete version of HoBA
as described in Algorithm 1, which solves the HoBA-opt
problem in (1) to train P and gω together.
For HeBA, we adopt the attack functions of the above five

single-UAP methods as the set of different attack functions
A = {Lh(xi, ωhr ) | h → {1, . . . , H}} used in (5), where H = 5
since A contains five attack functions. We also implement
HeBA in the following two different types.
• HeBA type 1. We first run each single-UAP method to

generate a set of R UAPs in the same way as in HoBA

type 1. After obtaining the H ⇓ R UAPs, we regard them
as a constant set of perturbations P and solve the HeBA-opt
problem in (5) to train the selective neural network gω. That
is, we do not execute steps 6-9 when calling Algorithm 3.
We view this type as an ablated version of HeBA since it
does not train P and gω together.

• HeBA type 2. This is the complete version of HeBA
as described in Algorithm 3, which solves the HeBA-opt
problem in (5) to train P and gω together.
We denote by UAT-HoBA1, DF-HoBA1, COS-HoBA1,

NAG-HoBA1 and TRM-HoBA1 the boosting attack methods
when applying HoBA type 1 on each of the single-UAP
methods; and by UAT-HoBA2, DF-HoBA2, COS-HoBA2,
NAG-HoBA2 and TRM-HoBA2 the boosting attack methods
when applying HoBA type 2. When the context is clear, we
omit the names of the single-UAP methods and directly use
HoBA1 and HoBA2 to refer to the corresponding boosting
attack methods of a single-UAP method. We denote by HeBA1
and HeBA2 the boosting attack methods when applying HeBA
in type 1 and type 2, respectively.

Attack model. We use the term “attack model” to denote
the learnable parameters that need to be trained in each attack
method. For our boosting attack methods, the attack model
consists of the perturbations in P and the selective neural
network gω. For each single-UAP method, its attack model
is the single UAP that needs to be learned. For GAP and
TDA, their attack models are the DNN-based generator that
produces a perturbation for each target image.

Datasets. We use ImageNet [41] and COCO [42] to con-
struct the following datasets: 1) training dataset D1 consists of
10,000 images uniformly sampled from the original training
dataset of ImageNet; 2) training dataset D2 consists of 10,000
images uniformly sampled from the original training dataset
of COCO; and 3) testing dataset D3 consists of 50,000 images
from the original validation dataset of ImageNet.

Usage of datasets. In the white-box setting, a victim DNN
is trained on D1, each attack model is trained on D1, and
the performance of the attack model is evaluated on D3 when
attacking the victim DNN. In the black-box setting, the victim
DNN and the surrogate DNN are independently trained on D1,
each attack model is trained on D2 to attack the surrogate
DNN, and the performance of the attack model is evaluated
on D3 when attacking the victim DNN. Using D2 instead of
D1 to train attack models enables us to assess the performance
of the attack models when they are trained on a dataset that is
different from the original training dataset of the victim DNN.

Victim DNNs. We use eight victim DNNs to evaluate the
performance of different attack methods, including ResNet-
50 [43], VGG-16 [44], Inception-V3 [45], SqueezeNet [46],
ViT-B [47] and LeViT-128 [48], Swin-T [49] and MaxViT-
T [50]. All the victim DNNs are not modified during the
training and evaluation of the attack models.

Selective neural network. We adopt a SqueezeNet [46] as
the architecture of the selective neural network gω. SqueezeNet
is a lightweight convolutional neural network that consists of
18 layers. Specifically, it consists of one initial convolutional
layer with a kernel size of 7⇓ 7 and a stride of 2, three max-
pooling layers with a kernel size of 3 ⇓ 3 and a stride of
2, and seven fire modules [46], each composed of a squeeze
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TABLE II
THE FR (%) WHEN ε → {2, 6, 10}. BOLD NUMBER MARKS THE HIGHEST FR IN EACH ROW. UNDERLINED NUMBER SHOWS THE RUNNER UP.

ε GAP TDA (UAT, HoBA1, HoBA2) (DF, HoBA1, HoBA2) (COS, HoBA1, HoBA2) (NAG, HoBA1, HoBA2) (TRM, HoBA1, HoBA2) (HeBA1, HeBA2)

ResNet-50
2 25.5 27.8 (19.0, 21.1, 24.7) (21.6, 24.2, 29.0) (21.2, 24.6, 28.3) (18.5, 24.5, 27.6) (20.6, 22.8, 25.3) (26.4, 31.3)
6 84.2 84.4 (73.6, 77.6, 87.6) (72.7, 76.6, 87.0) (66.6, 71.8, 80.5) (68.5, 75.7, 79.2) (71.9, 75.2, 87.2) (80.5. 89.4)
10 96.5 98.4 (94.1, 96.7, 98.1) (94.6, 96.8, 99.0) (92.3, 94.6, 97.7) (91.1, 96.3, 97.9) (93.2, 95.3, 98.1) (97.2, 99.3)

VGG-16
2 41.0 40.7 (36.2, 38.5, 44.0) (35.3, 37.9, 42.7) (32.6, 35.3, 42.6) (35.1, 39.1, 42.9) (34.6, 37.0, 42.4) (41.6, 46.4)
6 89.1 87.5 (83.8, 87.5, 93.0) (85.6, 89.4, 94.5) (87.1, 90.4, 95.3) (82.5, 91.5, 95.8) (86.6, 89.5, 94.1) (92.5, 96.3)
10 98.7 99.0 (95.3, 96.2, 98.5) (94.1, 96.7, 99.4) (95.4, 97.3, 99.2) (92.2, 97.2, 99.1) (95.0, 96.5, 99.0) (98.0, 99.5)

Inception-V3
2 34.2 35.4 (23.6, 26.9, 34.7) (26.4, 29.5, 38.6) (26.4, 29.9, 37.0) (24.0, 30.2, 37.0) (24.3, 28.3, 36.1) (32.7, 40.0)
6 81.7 84.9 (73.3, 78.6, 85.4) (72.2, 76.7, 85.1) (70.0, 74.4, 83.8) (70.3, 78.8, 84.3) (68.2, 74.6, 81.8) (79.7, 87.2)
10 95.4 97.8 (94.4, 97.5, 99.5) (93.7, 95.5, 99.0) (92.8, 95.4, 98.3) (90.3, 96.3, 99.0) (88.5, 93.0, 96.2) (98.4, 99.6)

SqueezeNet
2 33.3 36.5 (26.0, 29.9, 36.9) (25.3, 29.0, 35.3) (27.5, 30.0, 35.4) (24.2, 33.7, 34.3) (23.6, 28.7, 33.5) (34.9, 37.5)
6 87.5 89.0 (80.0, 83.7, 90.6) (79.3, 82.2, 91.2) (77.5, 81.8, 89.2) (76.3, 83.2, 88.3) (74.9, 83.2, 88.4) (84.4, 93.3)
10 98.3 98.6 (94.9, 96.3, 98.8) (94.3, 96.1, 99.5) (93.8, 95.0, 99.4) (91.0, 95.3, 99.3) (92.4, 94.5, 97.9) (97.2, 99.7)

ViT-B
2 35.5 36.1 (25.3, 28.6, 35.1) (29.5, 32.4, 40.3) (25.6, 31.8, 39.2) (27.9, 30.4, 37.9) (24.3, 27.7, 33.8) (32.9, 43.4)
6 83.7 84.4 (76.5, 80.4, 88.9) (75.6, 79.3, 88.3) (73.4, 78.1, 86.2) (73.6, 80.3, 86.5) (73.5, 76.0, 83.4) (81.3, 89.8)
10 96.7 97.9 (95.2, 98.6, 99.6) (95.1, 98.3, 99.5) (94.9, 97.8, 99.1) (94.3, 98.7, 99.2) (94.5, 96.5, 98.7) (98.7, 99.6)

LeViT-128
2 34.9 35.8 (24.6, 27.7, 36.2) (27.4, 31.2, 40.2) (26.1, 30.5, 39.0) (25.7, 31.4, 37.7) (24.8, 29.6, 36.5) (33.3, 41.9)
6 81.3 83.6 (74.2, 78.1, 87.6) (73.5, 78.5, 85.9) (73.8, 76.6, 84.3) (71.2, 79.6, 84.4) (72.5, 79.2, 85.1) (81.1, 89.0)
10 96.3 98.2 (94.6, 98.2, 99.1) (94.2, 98.0, 99.6) (93.9, 97.6, 98.9) (93.8, 98.0, 99.0) (92.4, 95.3, 98.4) (98.7, 99.6)

Swin-T
2 34.4 38.7 (26.5, 30.3, 39.8) (30.7, 36.4, 45.5) (27.6, 30.6, 39.4) (29.7, 31.3, 38.7) (27.2, 31.6, 39.5) (37.5, 47.5)
6 85.4 87.0 (75.3, 81.4, 89.5) (77.4, 81.6, 90.7) (74.3, 80.6, 88.5) (71.7, 76.0, 85.9) (75.4, 79.7, 88.2) (82.5, 91.3)
10 97.2 97.9 (94.7, 98.1, 99.3) (95.6, 98.5, 99.5) (94.3, 97.9, 99.3) (94.4, 98.2, 99.1) (95.4, 97.7, 99.0) (98.2, 99.7)

MaxViT-T
2 36.3 39.2 (27.5, 31.2, 37.7) (31.2, 35.4, 43.2) (26.5, 33.0, 41.8) (28.5, 31.7, 39.6) (26.5, 30.2, 36.5) (36.8, 46.0)
6 87.1 88.6 (78.3, 83.7, 89.2) (79.8, 82.7, 87.2) (72.4, 77.7, 86.9) (76.3, 82.0, 88.9) (72.5, 77.0, 87.7) (85.0, 90.8)
10 98.2 97.3 (95.2, 97.2, 99.5) (94.7, 98.3, 99.6) (94.2, 96.5, 98.6) (93.5, 96.7, 99.3) (94.6, 96.7, 98.9) (98.8, 99.7)

layer followed by an expand layer. It has been shown to
perform well in many different vision tasks [51], [52] and
we empirically find good performance of our boosting attack
methods in the experiments when employing SqueezeNet as
gω. For HoBA methods, we use K softmax-activated output
neurons in the last layer of SqueezeNet; and for HeBA
methods, we use H ⇓ R softmax-activated output neurons in
the last layer of SqueezeNet. We also investigate the impact
of different model architectures of gω on the performance of
our boosting attack methods in Appendix C.

Evaluation metrics. Following the previous works [6], [21],
[22], we adopt the fooling ratio (FR) on the testing dataset
D3 to evaluate attack effectiveness. It is computed as the
proportion of images in D3 that are successfully attacked. A
larger FR indicates better attack effectiveness. We report FR
in percentage by default.

We evaluate the average attack time (AAT) of each attack
method by measuring the average time cost of generating
the perturbed image of a target image in D3. Since the
attack model of each attack method is trained offline before
conducting attacks, AAT does not include the time to train the
attack model. The training time of attack methods is discussed
in Appendix D. A smaller AAT implies a faster attack speed
and we report AAT in milliseconds by default.

Implementation details. For the baseline methods, we
use the default hyperparameters used in their implementa-
tions [14], [21], [22], [24], [25], [28], [29]. For our boosting
attack methods, if not otherwise specified, we use K = 5
for HoBA methods and H = 5, R = 1 for HeBA methods.
We also study the effect of different values of K and R in
Section VI-H. By default, we set the number of training epochs
to 100 and set the learning rates of the PGD and the ADAM
optimizer to 10↗3.

For HoBA methods, we use a batch size of ↖ 64
K
↙ due to the

limit of GPU memory. This is because, when computing the
loss value of (1) for each training image, we need to compute
the value of the attack function L(xi, ωj) for K times by

adding each of the K perturbations to that image and then
feeding the K perturbed images to a victim DNN. Therefore,
the number of perturbed images fed to the victim DNN in one
training iteration is K times of the batch size. Since our GPU
memory can accommodate at most 64 perturbed images fed
to the victim DNN at the same time, ↖ 64

K
↙ is the maximum

batch size that can be accommodated by our GPU. Due to the
same reason, for HeBA methods, we can derive from (5) that
the number of images fed to a victim DNN in one iteration is
H times of the batch size. Thus, we set the batch size to ↖ 64

H
↙.

The implementations are realized using Pytorch version 1.11.0
with CUDA version 11.3. All experiments are conducted on a
server with an NVIDIA 3060 GPU, 32GB main memory, and
an Intel(R) Core(TM) i9-10900F CPU @ 2.80GHz.

B. Attack Effectiveness in the White-box Setting (Q1)

In this subsection, we answer Q1 by comparing the attack
effectiveness of our boosting attack methods with the baseline
methods in the white-box setting. Table II reports the FR of
all the attack methods when ε → {2, 6, 10}. From the results,
we have the following observations.

We can see that when HoBA1 and HoBA2 are applied, the
FR of the single-UAP methods is significantly improved. In
addition, HeBA1 and HeBA2 also achieve much higher FR
than that of the single-UAP methods. Moreover, the FR of
UAT-HoBA2, DF-HoBA2 and HeBA2 is almost always higher
than that of the image-dependent generator-based methods
GAP and TDA, and the highest FR is consistently achieved
by HeBA2 as shown by the bold numbers in each row of
Table II. These results demonstrate the great performance
of the proposed boosting attack framework in improving the
attack effectiveness of the single-UAP methods.

Comparing HoBA2 and HeBA2 with their type 1 counter-
parts, we can see that HoBA2 consistently achieves a higher
FR than that of HoBA1, and HeBA2 consistently outperforms
HeBA1. This is because the set of UAPs used by HoBA1 and
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TABLE III
THE TRANSfi (%) WHEN ε → {2, 6, 10}. BOLD NUMBER MARKS THE HIGHEST TRANSfi IN EACH ROW. UNDERLINED NUMBER SHOWS THE RUNNER UP.

fi GAP TDA (UAT, HoBA1, HoBA2) (DF, HoBA1, HoBA2) (COS, HoBA1, HoBA2) (NAG, HoBA1, HoBA2) (TRM, HoBA1, HoBA2) (HeBA1, HeBA2)

ε = 2

ResNet-50 10.8 12.9 (7.8, 9.4, 12.4) (7.7, 9.7, 12.8) (8.0, 10.6, 14.0) (6.9, 9.6, 12.4) (7.7, 9.9, 12.2) (11.7, 16.0)
VGG-16 13.9 18.6 (12.7, 16.5, 20.4) (13.0, 14.6, 19.9) (12.9, 15.5, 19.5) (12.7, 15.6, 18.7) (13.1, 15.8, 19.6) (18.3, 22.3)

Inception-V3 17.9 19.2 (13.7, 15.9, 20.3) (15.3, 16.8, 19.6) (14.0, 16.6, 19.7) (14.3, 16.3, 19.8) (14.4, 16.6, 19.9) (18.6, 23.1)
SqueezeNet 15.1 19.4 (12.2, 14.6, 18.9) (13.7, 14.6, 19.6) (13.6, 16.0, 20.3) (12.6, 15.2, 18.9) (13.3, 15.4, 19.4) (15.8, 22.7)

ViT-B 7.0 8.0 (5.9, 6.6, 10.4) (6.3, 7.6, 10.4) (5.5, 7.7, 10.2) (5.2, 7.4, 9.9) (6.1, 7.6, 10.3) (9.0, 13.4)
LeViT-128 7.4 9.2 (6.8, 8.0, 9.8) (6.4, 8.6, 10.2) (5.7, 7.6, 10.9) (5.5, 7.8, 10.4) (6.3, 8.0, 10.7) (10.4, 12.9)

Swin-T 6.7 7.5 (6.4, 7.5, 9.0) (7.2, 8.0, 9.7) (5.8, 7.0, 8.8) (6.2, 6.9, 8.4) (6.6, 7.6, 9.3) (8.9, 11.0)
MaxViT-T 7.2 8.7 (5.9, 7.2, 10.8) (6.8, 8.0, 11.2) (6.3, 8.3, 11.6) (6.0, 7.6, 10.9) (6.6, 8.0, 11.0) (10.2, 12.6)

ε = 6

ResNet-50 50.8 57.0 (44.2, 48.6, 58.4) (45.2, 48.0, 55.8) (41.5, 45.3, 55.3) (43.0, 48.5, 52.3) (44.1, 48.8, 57.0) (53.5, 60.0)
VGG-16 35.9 39.7 (34.4, 37.1, 42.4) (32.5, 33.8, 39.2) (31.6, 35.5, 39.6) (31.0, 34.0, 41.7) (34.0, 36.3, 41.1) (39.2, 43.8)

Inception-V3 54.7 59.0 (49.7, 52.6, 60.2) (47.1, 49.5, 57.4) (45.2, 48.6, 54.3) (45.3, 50.8, 57.2) (48.2, 51.1, 58.0) (55.9, 62.3)
SqueezeNet 45.6 51.8 (43.1, 46.6, 52.5) (38.5, 39.0, 49.0) (37.3, 41.2, 49.2) (41.0, 42.4, 50.2) (41.2, 42.8, 50.5) (46.9, 53.4)

ViT-B 28.9 29.9 (24.9, 27.0, 32.7) (26.0, 30.7, 33.2) (23.2, 24.6, 28.8) (24.8, 26.7, 31.2) (26.0, 28.2, 31.3) (29.5, 35.6)
LeViT-128 30.3 32.7 (26.5, 30.1, 33.8) (27.2, 31.9, 36.0) (24.9, 27.2, 32.4) (28.3, 29.2, 35.2) (28.1, 29.8, 35.8) (33.1, 37.4)

Swin-T 29.4 31.5 (26.6, 29.8, 34.0) (28.1, 30.4, 35.6) (25.6, 27.5, 33.0) (26.2, 28.6, 32.3) (28.2, 30.1, 34.5) (31.7, 37.8)
MaxViT-T 28.2 30.5 (23.5, 26.9, 31.0) (26.2, 29.3, 34.8) (21.5, 23.6, 29.7) (24.9, 28.0, 32.0) (24.9, 28.7, 32.6) (30.2, 36.9)

ε = 10

ResNet-50 60.8 66.7 (61.3, 63.9, 67.8) (59.3, 62.2, 66.8) (57.7, 60.0, 66.8) (60.6, 63.2, 66.0) (61.8, 63.4, 65.8) (65.3, 72.2)
VGG-16 43.0 49.3 (42.5, 44.6, 52.4) (41.7, 43.0, 53.3) (41.5, 45.3, 49.7) (41.0, 44.8, 47.4) (42.9, 45.1, 51.2) (46.6, 55.8)

Inception-V3 66.2 69.7 (64.4, 67.6, 72.6) (61.8, 64.0, 68.8) (61.6, 65.5, 71.9) (61.0, 66.9, 70.8) (64.7, 67.4, 71.2) (69.4, 74.8)
SqueezeNet 54.0 59.3 (48.0, 50.4, 59.5) (52.0, 54.0, 62.7) (48.2, 51.0, 57.6) (50.7, 55.9, 60.4) (50.0, 54.2, 60.2) (57.5, 64.5)

ViT-B 32.7 38.2 (32.9, 36.3, 40.6) (30.4, 36.7, 41.6) (29.5, 36.9, 43.7) (32.6, 35.6, 41.8) (31.7, 37.5, 41.7) (39.5, 45.8)
LeViT-128 39.3 42.0 (37.5, 40.8, 45.5) (41.1, 42.8, 45.8) (36.3, 40.3, 44.8) (36.3, 39.9, 42.5) (37.9, 39.1, 44.0) (44.4, 47.0)

Swin-T 30.4 35.2 (29.6, 32.2, 37.9) (28.5, 33.0, 37.4) (27.3, 31.6, 34.0) (30.2, 34.3, 38.0) (30.4, 35.1, 37.3) (35.8, 39.6)
MaxViT-T 36.5 41.4 (34.6, 38.9, 43.8) (36.2, 39.8, 44.6) (34.2, 37.0, 41.2) (35.1, 37.9, 42.8) (36.8, 39.6, 44.1) (41.5, 46.7)

HeBA1 is separately trained from the selective neural network
gω, with each UAP trained by an independent run of a single-
UAP method on the entire training dataset D1. The UAPs
generated in this way usually do not have very high diversity,
thus reducing the FR of HoBA1 and HeBA1. For HoBA2 and
HeBA2, the set of UAPs is trained together with gω. These
UAPs tend to have high diversity as each of the UAPs is
trained to attack the images in a separate cluster of images,
thus leading to much higher FR of HoBA2 and HeBA2.

Comparing the performance of HoBA and HeBA methods,
we can see that HeBA1 and HeBA2 often achieve higher FR
than that of HoBA1 and HoBA2, respectively. This demon-
strates the superiority of HeBA methods, which is achieved via
further enhancing the diversity of UAPs by training them using
multiple different types of attack functions. Compared with the
UAPs generated by HoBA methods, the UAPs generated by
HeBA methods are able to successfully attack more diversified
sets of images, thereby attaining higher attack effectiveness.
We will analyze the diversity of the UAPs trained by our
boosting attack methods in Section VI-F.

C. Attack Effectiveness in the Black-box Setting (Q2)

In this subsection, we answer Q2 by evaluating the attack
effectiveness of different attack methods in the black-box
setting, where an attacker has no access to the architecture
or the parameters of the victim DNN. Following the routine
of transfer adversarial attacks [16], [17], [22], [30], we use
a surrogate DNN to train the attack model of each attack
method in this setting. Since the attacker lacks knowledge of
the victim DNN’s architecture, we use the architecture of each
victim DNN as the surrogate DNN’s architecture and report
the attack effectiveness of all cases.

Denote by FRi,j (i ↑= j) the transfer attack effectiveness
when transferring from a surrogate DNN fi to a victim DNN
fj . For each attack method, we compute FRi,j in the following
steps: 1) train fi on D1; 2) train the attack model to attack
fi on D2; and 3) use the trained attack model to attack fj on
D3 and calculate the corresponding FR as FRi,j .

Denote by Q = {f1, . . . , f8} the eight victim DNNs used
in our experiments. For each attack method, we measure its
average transfer attack effectiveness when transferring from a
surrogate DNN fi → Q to the other victim DNNs fj → Q \ fi
by

Transfi =
1

7

∑

fj↘Q\fi

FRi,j , (6)

which is the average of FRi,j when transferring from the
surrogate DNN fi to each of the other victim DNNs. A higher
Transfi means better transfer attack effectiveness.

Table III reports the Transfi of different attack methods
when ε → {2, 6, 10}. We can see that all the boosting attack
methods consistently outperform the single-UAP methods, and
the highest Transfi is consistently achieved by HeBA2. These
results demonstrate the good performance of the boosting
attack framework in enhancing the transfer attack effectiveness
of the single-UAP methods.

We explain the superior transferability of our boosting attack
methods as follows. First, due to the good transferability of
UAP [14], [15], [17], each of the diversified UAPs transfers
well from attacking the surrogate DNN to the other victim
DNNs. Second, since these UAPs are diversified, they tend
to successfully transfer-attack complementary sets of images.
Third, gω also transfers well in selecting the most effective
UAP to successfully attack different victim DNNs. Therefore,
the boosting attack methods achieve superior transferability
by successfully attacking the union of the images successfully
transfer-attacked by each of the diversified UAPs.

In addition, we observe a similar phenomenon to that in
Table II, where HoBA2 and HeBA2 consistently outperform
HoBA1 and HeBA1, respectively. Furthermore, in most cases,
HeBA1 and HeBA2 obtain higher Transfi than that of HoBA1
and HoBA2, respectively. This suggests that the high diversity
of UAPs is an important factor contributing to the high transfer
attack effectiveness. We will analyze the diversity of the UAPs
trained by our boosting attack methods in Section VI-F.
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TABLE IV
THE FR (%) IN THE PRESENCE OF DIFFERENT DEFENSES WHEN ε = 6. BOLD NUMBER MARKS THE HIGHEST FR IN EACH ROW. UNDERLINED NUMBER

SHOWS THE RUNNER UP.

Defense GAP TDA (UAT, HoBA1, HoBA2) (DF, HoBA1, HoBA2) (COS, HoBA1, HoBA2) (NAG, HoBA1, HoBA2) (TRM, HoBA1, HoBA2) (HeBA1, HeBA2)

ResNet-50

No defense 84.2 84.4 (73.6, 77.6, 87.6) (72.7, 76.6, 87.0) (66.6, 71.8, 80.5) (68.5, 75.7, 79.2) (71.9, 75.2, 87.2) (80.5, 89.4)
JPEG 46.5 44.7 (36.3, 42.8, 47.7) (34.2, 40.5, 46.8) (29.6, 34.4, 40.9) (31.6, 37.6, 42.3) (28.7, 32.2, 39.6) (45.2, 49.7)

Crop and rescale 28.8 25.3 (22.2, 26.7, 30.4) (22.4, 27.4, 31.7) (16.3, 22.9, 26.0) (18.4, 23.8, 28.5) (19.2, 22.6, 27.0) (27.4, 32.8)
TV minimization 35.9 37.3 (29.2, 32.1, 38.6) (28.5, 32.2, 39.2) (23.3, 26.4, 30.1) (25.2, 28.8, 33.2) (26.2, 30.4, 34.7) (36.0, 39.5)

Bit depth reduction 45.7 45.3 (35.2, 40.4, 46.7) (36.8, 42.3, 47.5) (27.6, 33.6, 38.2) (30.7, 37.0, 42.4) (31.5, 33.0, 36.9) (44.6, 49.0)
Adversarial training 40.3 38.2 (32.2, 36.5, 41.9) (34.5, 37.2, 43.5) (31.1, 34.7, 38.0) (32.6, 37.7, 42.0) (33.1, 37.6, 42.7) (42.4, 46.4)

VGG-16

No defense 89.1 87.5 (83.8, 87.5, 93.0) (85.6, 89.4, 94.5) (87.1, 90.4, 95.3) (82.5, 91.5, 95.8) (86.6, 89.5, 94.1) (92.5, 97.3)
JPEG 57.2 54.9 (49.1, 52.2, 57.5) (51.5, 53.0, 56.7) (44.6, 48.5, 53.6) (48.2, 52.7, 56.9) (46.2, 50.2, 57.7) (56.5, 59.4)

Crop and rescale 30.6 32.4 (25.1, 27.8, 31.6) (27.3, 31.6, 35.7) (23.8, 25.3, 29.8) (23.2, 28.8, 33.0) (22.7, 26.0, 30.8) (33.4, 36.8)
TV minimization 45.5 49.0 (40.0, 44.2, 49.7) (43.7, 47.0, 52.2) (43.2, 45.9, 49.8) (39.2, 43.6, 48.5) (41.5, 44.4, 49.3) (48.8, 53.2)

Bit depth reduction 42.3 38.7 (36.5, 39.2, 45.8) (37.1, 38.4, 42.2) (34.5, 37.9, 41.0) (32.9, 35.8, 39.7) (36.1, 39.9, 43.0) (44.6, 46.6)
Adversarial training 48.5 47.0 (38.6, 43.1, 49.0) (40.5, 43.2, 48.5) (40.9, 44.7, 51.1) (38.7, 42.4, 47.8) (39.2, 42.7, 48.0) (47.6, 53.3)

Inception-V3

No defense 81.7 84.9 (73.3, 78.6, 85.4) (72.2, 76.7, 85.1) (70.0, 74.4, 83.8) (70.3, 78.8, 84.3) (68.2, 74.6, 81.8) (79.7, 87.2)
JPEG 41.8 40.5 (34.2, 38.5, 43.7) (33.7, 36.9, 42.5) (30.4, 34.0, 39.2) (33.7, 37.4, 39.5) (31.6, 34.8, 38.7) (38.6, 44.4)

Crop and rescale 25.3 22.5 (18.9, 21.1, 24.7) (19.0, 21.5, 25.9) (15.2, 18.4, 23.0) (16.1, 18.5, 22.8) (16.8, 19.3, 23.7) (22.5, 26.8)
TV minimization 30.8 28.2 (24.4, 28.6, 33.7) (21.3, 26.8, 31.4) (22.7, 25.0, 29.6) (23.7, 26.6, 30.5) (20.6, 23.7, 27.9) (29.6, 33.9)

Bit depth reduction 36.0 33.3 (29.0, 33.6, 38.8) (26.4, 29.2, 35.0) (26.1, 30.6, 36.2) (28.7, 31.3, 36.8) (25.5, 29.0, 33.2) (35.6, 39.2)
Adversarial training 35.2 32.3 (30.4, 33.2, 37.5) (28.5, 30.9, 35.6) (29.6, 33.1, 36.9) (28.2, 31.4, 37.0) (27.1, 30.4, 35.4) (35.8, 39.9)

SqueezeNet

No defense 87.5 89.0 (80.0, 83.7, 90.6) (79.3, 82.2, 91.2) (77.5, 81.8, 89.2) (76.3, 83.2, 88.3) (74.9, 83.2, 88.4) (84.4, 93.3)
JPEG 58.3 55.8 (46.8, 53.1, 56.3) (49.3, 54.0, 59.2) (45.8, 48.1, 52.2) (47.6, 49.8, 54.8) (44.0, 47.5, 53.6) (56.5, 61.2)

Crop and rescale 34.6 33.2 (27.7, 32.0, 36.8) (26.6, 29.7, 35.9) (26.2, 28.5, 33.7) (24.3, 28.8, 34.0) (25.3, 27.4, 32.1) (34.0, 37.2)
TV minimization 43.0 45.1 (38.7, 42.4, 48.2) (37.2, 42.6, 49.6) (34.2, 37.7, 42.0) (36.6, 40.3, 45.7) (36.2, 39.6, 44.7) (45.1, 49.4)

Bit depth reduction 46.5 44.9 (35.2, 40.4, 46.9) (33.9, 37.3, 44.6) (36.0, 39.2, 44.7) (34.7, 38.2, 43.7) (32.9, 35.0, 41.4) (43.8, 48.4)
Adversarial training 42.2 43.5 (36.5, 40.3, 46.0) (34.2, 39.6, 44.7) (35.8, 38.7, 45.2) (33.9, 37.4, 43.5) (32.3, 36.4, 41.5) (44.2, 48.8)

ViT-B

No defense 83.7 84.4 (76.5, 80.4, 88.9) (75.6, 79.3, 88.3) (73.4, 78.1, 86.2) (73.6, 80.3, 86.5) (73.5, 76.0, 83.4) (81.3, 89.8)
JPEG 49.6 50.2 (40.5, 45.0, 52.3) (38.1, 45.8, 50.2) (37.6, 43.5, 48.0) (34.0, 41.4, 47.1) (35.6, 39.3, 46.2) (47.3, 53.6)

Crop and rescale 32.3 31.8 (27.8, 29.5, 34.0) (25.2, 28.3, 33.2) (25.0, 28.1, 32.9) (24.4, 28.7, 31.3) (22.2, 26.3, 31.6) (31.2, 35.0)
TV minimization 40.8 41.6 (35.2, 39.7, 43.4) (33.3, 38.0, 43.0) (34.6, 38.2, 42.1) (32.9, 37.3, 40.0) (34.2, 37.9, 42.6) (41.9, 43.5)

Bit depth reduction 47.3 49.2 (39.7, 43.6, 51.4) (37.2, 44.0, 49.5) (36.3, 41.3, 47.5) (33.3, 39.8, 45.2) (35.2, 39.5, 45.0) (46.7, 52.4)
Adversarial training 39.4 42.0 (33.6, 35.3, 40.2) (35.4, 38.0, 42.0) (34.1, 38.0, 43.8) (33.2, 35.9, 41.6) (34.6, 36.8, 42.4) (41.3, 44.6)

LeViT-128

No defense 81.3 83.6 (74.2, 78.1, 87.6) (73.5, 78.5, 85.9) (73.8, 76.6, 84.3) (71.2, 79.6, 84.4) (72.5, 79.2, 85.1) (81.1, 89.0)
JPEG 46.2 43.0 (39.8, 43.2, 49.0) (36.3, 39.8, 46.4) (34.6, 38.2, 43.5) (36.8, 40.1, 47.5) (32.3, 37.6, 42.2) (45.8, 49.0)

Crop and rescale 30.6 31.5 (24.0, 28.4, 33.5) (25.6, 28.8, 35.0) (24.6, 27.4, 31.4) (23.2, 26.9, 30.6) (21.8, 25.3, 29.5) (30.2, 35.5)
TV minimization 36.3 33.4 (27.2, 31.9, 36.7) (25.9, 28.0, 34.2) (28.2, 31.9, 35.0) (27.4, 30.5, 34.8) (26.6, 28.9, 31.6) (35.5, 38.2)

Bit depth reduction 44.5 46.2 (38.8, 43.8, 49.5) (35.6, 38.2, 44.2) (35.2, 39.0, 45.8) (37.0, 40.5, 45.3) (34.5, 37.3, 42.0) (45.2, 51.1)
Adversarial training 42.5 41.7 (34.6, 39.1, 42.9) (32.2, 37.2, 41.5) (35.1, 40.4, 44.5) (32.0, 36,2, 42.4) (34.6, 38.2, 42.3) (43.1, 47.6)

Swin-T

No defense 85.4 87.0 (75.3, 81.4, 89.5) (77.4, 81.6, 90.7) (74.3, 80.6, 88.5) (71.7, 76.0, 85.9) (75.4, 79.7, 88.2) (82.5, 91.3)
JPEG 44.2 45.7 (36.0, 40.3, 45.5) (38.2, 41.4, 47.9) (36.4, 39.8, 46.4) (38.0, 43.7, 48.0) (33.6, 36.9, 42.8) (45.4, 49.0)

Crop and rescale 30.5 27.2 (24.1, 28.6, 33.4) (22.5, 26.0, 31.2) (21.6, 24.8, 29.5) (22.0, 25.9, 30.2) (21.2, 24.2, 29.0) (30.7, 34.2)
TV minimization 32.8 30.4 (25.0, 28.5, 33.3) (23.7, 26.4, 30.6) (24.0, 28.8, 31.6) (23.8, 27.7, 32.5) (22.8, 25.9, 30.1) (29.5, 33.6)

Bit depth reduction 43.5 40.8 (33.2, 38.6, 43.5) (36.0, 40.3, 46.7) (34.8, 38.2, 44.5) (34.4, 39.7, 45.0) (32.5, 35.3, 39.6) (42.7, 46.9)
Adversarial training 34.2 33.0 (28.8, 31.5, 36.2) (29.7, 33.1, 37.3) (26.1, 29.6, 34.8) (25.6, 29.0, 33.5) (29.1, 32.4, 36.9) (35.2, 38.7)

MaxViT-T

No defense 87.1 88.6 (78.3, 83.7, 89.2) (79.8, 82.7, 87.2) (72.4, 77.7, 86.9) (76.3, 82.0, 88.9) (72.5, 77.0, 87.7) (85.0, 90.8)
JPEG 52.5 53.8 (45.6, 49.3, 54.7) (47.0, 50.4, 55.8) (43.5, 47.2, 52.5) (44.9, 48.6, 53.0) (43.1, 46.8, 51.2) (52.0, 56.2)

Crop and rescale 33.7 35.7 (26.3, 30.4, 35.9) (26.8, 31.5, 37.7) (24.0, 28.2, 33.5) (26.3, 29.4, 35.2) (23.6, 27.9, 32.0) (33.2, 36.8)
TV minimization 30.4 32.8 (24.0, 28.8, 33.6) (26.9, 29.8, 34.2) (22.4, 25.8, 30.2) (25.8, 29.5, 34.9) (21.7, 25.4, 30.7) (31.6, 34.9)

Bit depth reduction 42.9 43.0 (32.6, 36.0, 41.8) (35.6, 39.2. 44.0) (35.2, 38.4, 42.6) (34.2, 38.3, 42.0) (32.7, 37.1, 41.1) (42.4, 45.8)
Adversarial training 39.3 41.3 (33.6, 36.3, 40.2) (35.3, 39.3, 43.2) (31.4, 35.0, 38.5) (32.0, 35.9, 39.6) (32.2, 36.6, 40.5) (42.2, 46.5)

D. Attack Effectiveness Against Defense (Q3)

Here, we answer Q3 by investigating the attack effectiveness
of the compared attack methods against different types of
defense. In particular, we consider four image-transformation-
based defense methods presented in [53], including JPEG, crop
and rescale, total variance (TV) minimization, and bit depth
reduction. Each defense method is applied on every perturbed
image before feeding the perturbed image to the victim DNNs.
We adopt the default hyperparameters of these defenses used
in [53]. In addition, we also consider the adversarial training
defense method [21], which aims to train a victim DNN to be
more robust to attacks. Specifically, for each attack method, we
follow the procedure presented in [21] to alternatively update
the victim DNN and the attack model of the attack method in
each iteration of the adversarial training. We adopt the default
hyperparameters used in [21].

Table IV reports the FR of all the attack methods against
different defense methods, where we follow the experimental
settings in Section VI-B and use ε = 6. We can see that
compared with when no defenses are in place, the FR of all the
attack methods drops when a defense is applied. Nevertheless,
our boosting attack methods still consistently outperform the
single-UAP methods and the highest FR is achieved by HeBA2
in most cases.

We explain the superior attack effectiveness of our boosting
attack methods under different defenses as follows. First,

UAPs often remain effective against these defenses because
they generally exploit non-robust, high-dimensional features
that victim DNNs inherently rely on for classification [13],
[54]. These features are highly predictive, but subtle and not
aligned with human perception. For the image-transformation-
based defense methods, they often make local or low-level
changes and do not specifically identify and remove these
non-robust features [53]. For the adversarial training defense
method, it often cannot explore the entire high-dimensional
space of the non-robust features due to its high computational
cost [55], [56], thereby leaving sufficient exploitable features
for UAPs to leverage. Second, the key mechanism of our
boosting attack framework still works in the presence of
these defenses. Although the effectiveness of each of the
diversified UAPs is reduced by the defenses, the sets of images
successfully attacked by the diversified UAPs are still differ-
ent and complementary to each other. Hence, the boosting
attack framework can still improve the attack effectiveness
of the single-UAP methods, thereby resulting in a higher FR
of the boosting attack methods. In summary, the proposed
boosting attack methods can maintain high FR even under
these defenses because UAPs are resistant to the defenses to
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TABLE V
THE AAT (MILLISECONDS) OF DIFFERENT ATTACK METHODS WHEN ε = 6.

GAP TDA (UAT, HoBA1, HoBA2) (DF, HoBA1, HoBA2) (COS, HoBA1, HoBA2) (NAG, HoBA1, HoBA2) (TRM, HoBA1, HoBA2) (HeBA1, HeBA2)

ResNet-50 10.1 10.1 (<0.1, 2.3, 2.3) (<0.1, 2.4, 2.3) (<0.1, 2.3, 2.3) (<0.1, 2.3, 2.3) (<0.1, 2.2, 2.2) (2.2, 2.2)
VGG-16 10.2 10.1 (<0.1, 2.4, 2.3) (<0.1, 2.4, 2.3) (<0.1, 2.4, 2.4) (<0.1, 2.4, 2.4) (<0.1, 2.2, 2.4) (2.3, 2.2)

Inception-V3 10.2 10.1 (<0.1, 2.3, 2.4) (<0.1, 2.5, 2.3) (<0.1, 2.4, 2.4) (<0.1, 2.3, 2.4) (<0.1, 2.4, 2.3) (2.4, 2.3)
SqueezeNet 10.1 10.1 (<0.1, 2.3, 2.3) (<0.1, 2.3, 2.3) (<0.1, 2.4, 2.3) (<0.1, 2.4, 2.4) (<0.1, 2.4, 2.4) (2.4, 2.4)

ViT-B 10.3 10.2 (<0.1, 2.2, 2.3) (<0.1, 2.3, 2.3) (<0.1, 2.3, 2.3) (<0.1, 2.3, 2.2) (<0.1, 2.2, 2.2) (2.3, 2.3)
LeViT-128 10.1 10.2 (<0.1, 2.3, 2.4) (<0.1, 2.4, 2.4) (<0.1, 2.4, 2.5) (<0.1, 2.4, 2.4) (<0.1, 2.3, 2.3) (2.3, 2.3)

Swin-T 10.2 10.2 (<0.1, 2.2, 2.4) (<0.1, 2.4, 2.4) (<0.1, 2.4, 2.4) (<0.1, 2.3, 2.4) (<0.1, 2.3, 2.4) (2.3, 2.4)
MaxViT-T 10.3 10.2 (<0.1, 2.3, 2.3) (<0.1, 2.4, 2.3) (<0.1, 2.3, 2.4) (<0.1, 2.4, 2.4) (<0.1, 2.3, 2.3) (2.3, 2.3)

some extent and our boosting attack framework is effective
in further improving the attack effectiveness by leveraging
multiple diversified UAPs.

E. Time Cost of Attacks (Q4)

In this subsection, we answer Q4 by analyzing the attack
efficiency of different attack methods. Table V reports the
AAT of all the attack methods when conducting the previous
experiments in Section VI-B and using ε = 6. We have the
following observations.

The AAT of all the compared methods is less than 10.3
milliseconds. This demonstrates the superior speed of univer-
sal adversarial attacks and image-dependent generator-based
methods in launching fast attacks.

The AAT of all the single-UAP methods is less than 0.1
milliseconds since they produce a perturbed image by simply
adding the UAP to the target image. However, the fast attack
speed of the single-UAP methods is gained at the cost of only
using a single UAP to attack all target images, which has
been demonstrated to be the major bottleneck of their attack
effectiveness by the previous experiments in Tables II-IV.

The AAT of the proposed boosting attack methods is about
2.4 milliseconds. Compared with the single-UAP methods, the
major overhead of HoBA and HeBA methods is caused by
calling the selective neural network gω to make a selection in
the small set of diversified UAPs. Since gω is a lightweight
SqueezeNet [46] and making the selection only needs a
forward pass through gω, the additional time cost induced
by calling gω is only about 2.4 milliseconds. Considering the
significant improvement of attack effectiveness achieved by
our methods in Tables II-IV, an additional time cost of 2.4
milliseconds is a good tradeoff when conducting fast attacks.

The AAT of GAP and TDA is around 10.1 milliseconds,
which is slightly higher than that of HoBA and HeBA meth-
ods. The major overhead of GAP and TDA is caused by the
complicated model architecture of the DNN-based generator
that maps a target image into a perturbation.

F. The Diversity of UAPs: A Case Study (Q5)

In this subsection, we answer Q5 by conducting a case study
in Fig. 2 to analyze the diversity of UAPs trained by HoBA
and HeBA methods when attacking ResNet-50. We follow the
experimental settings in Section VI-B and use ε = 6.

Each of HoBA and HeBA methods produces a set of UAPs
P , and we measure the diversity of these UAPs by the average

diversity (AD), that is,

AD =
1(
K

2

)
∑

i ≃=j

DIVi,j , (7)

where

DIVi,j = 1 ⇔ |Vi ↔ Vj |
|Vi ↓ Vj |

(8)

measures the diversity between the pair of UAPs ωi and ωj
in P on the testing dataset D3. Vi and Vj are the sets of
successfully attacked images when using ωi and ωj to attack
all the images in D3, respectively. A larger DIVi,j indicates a
greater difference between Vi and Vj , thus suggesting a higher
diversity between ωi and ωj . Therefore, a larger AD means a
higher average diversity for the UAPs in P .

Fig. 2 shows the appearance of every UAP in P , which
is visualized in the same way as in [6], [24]. In the caption
of each subfigure, we report the AD of the UAPs in P . In
addition, we also report the fooling ratio of each UAP when
applying it to attack all the images in D3. We use the notation
FR↑ here to distinguish from the FR that our boosting attack
methods achieve by using all the UAPs in P .

As shown in Figs. 2(a), 2(c), 2(e), and 2(i), each set of
UAPs produced by HoBA1 show similar visual patterns and
they have a small AD. Such results are also observed in some
previous works [6], [22], [24], which indicated that multiple
independent runs of a single-UAP method usually generate
similar UAPs that tend to successfully attack similar sets
of images. This is the major cause for the small AD. An
exception is Fig. 2(g), where the UAPs generated by NAG-
HoBA1 show a similar grid-like global pattern but they have
different local patterns. This is because NAG samples UAPs
from a trained generator, which improves the diversity of the
sampled UAPs [22]. Thus, NAG-HoBA1 achieves a higher AD
compared to the other HoBA1 methods.

Comparing the results of HoBA1 and HoBA2 in Fig. 2 when
they are applied on the same single-UAP method, we can see
that the UAPs generated by HoBA2 are more diversified than
those generated by HoBA1, as shown by the appearances of
the UAPs and also demonstrated by the higher AD of the
UAPs generated by HoBA2. This is because HoBA2 generates
the set of UAPs by training each UAP to attack a separate
cluster of images. Meanwhile, due to the high AD of these
UAPs, each of them often successfully attacks a large number
of new images that cannot be successfully attacked by the
other UAPs in P . When using this set of diversified UAPs
to conduct the proposed boosting attack, the union of images
successfully attacked by the UAPs of HoBA2 is much larger
than that of HoBA1, as illustrated by the comparison of the
Venn diagrams in Figs. 1(b.1) and 1(b.2). Therefore, we can
observe in Tables II-IV that HoBA2 consistently outperforms
HoBA1 in achieving higher attack effectiveness. In addition,
we can also see in Fig. 2 that the FR↑ of a UAP generated by
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(i) TRM-HoBA1, FR↑=(72.1, 71.9, 71.5, 71.2, 70.9), AD=0.04
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(l) HeBA2, FR↑=(67.7, 65.0, 64.7, 61.8, 60.2), AD=0.36

Fig. 2. The UAPs generated by the proposed boosting attack methods on ResNet-50 when ε = 6. (a), (c), (e), (g) and (i) show the five UAPs produced
by HoBA1. (b), (d), (f), (h) and (j) show the five UAPs produced by HoBA2. (k) and (l) show the five UAPs produced by HeBA1 and HeBA2, respectively.
AD is the average diversity of the five UAPs. FR→ shows the fooling ratio of the five UAPs in the same subfigure when applying each of them to attack all
images in the testing dataset D3.

HoBA1 is often slightly larger than that of a UAP generated
by HoBA2. This is because each UAP generated by HoBA1
is trained on the entire training dataset, but a UAP generated
by HoBA2 is trained on a cluster of images, which contains
fewer training images.

We can observe from Fig. 2 that the UAPs produced by
HeBA1 and HeBA2 are more diversified than those generated
by HoBA1 and HoBA2, respectively. HeBA1 achieves a higher
AD than that of HoBA1, as it uses multiple different attack
functions to train the set of UAPs. However, since each UAP
of HeBA1 is trained on the entire training dataset, the AD
of HeBA1 is still lower than that of HoBA2 and HeBA2.
In addition, HeBA2 achieves the highest AD among all the
boosting attack methods since it uses multiple different attack
functions to train the set of UAPs and each UAP is trained on a
separate cluster of training images. Due to its high AD, we can
observe in Tables II-IV that HeBA2 consistently achieves the
best attack effectiveness in all cases. This further demonstrates
that when using the same number of UAPs, enhancing the

diversity of UAPs is the key to improving the attack effective-
ness of the proposed boosting attack framework, as illustrated
by the comparison of the Venn diagrams in Figs. 1(b.2) and
1(b.3).

G. Correlation Analysis Between FR and AD (Q6)

In this subsection, we answer Q6 by delving more deeply
into the relationship between the diversity of UAPs and the at-
tack effectiveness of the proposed boosting attack framework.

Specifically, we conduct a correlation analysis between FR
and AD in Fig. 3, where we follow the experimental settings
in Section VI-B and use ε = 6. Each subfigure in Fig. 3
shows the results when attacking one victim DNN. For each
boosting attack method, we produce one pair of FR and AD,
thus drawing one point in the subfigure. We also report the
Pearson correlation coefficient (PCC) ς computed between the
FR and AD of all the points in the subfigure.

As shown in Fig. 3, points with a higher AD tend to also
have a higher FR, suggesting that FR and AD exhibit a high
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Fig. 3. The FR and AD of the proposed boosting attack methods when ε = 6.
ϖ in each subfigure is the Pearson correlation coefficient (PCC) computed
between the FR and AD of all the points in the subfigure.

positive correlation. This is also evidenced by the high ς shown
in each subfigure, with the lowest ς reaching 0.88. Such results
indicate that the diversity of UAPs largely correlates with the
attack effectiveness of the boosting attack framework when
using the same number of UAPs. Therefore, enhancing the
diversity of UAPs underpins the improvement of the attack
effectiveness, which also explains the great attack effectiveness
of the strongest version of our boosting attack method, that is,
HeBA2.

H. Hyperparameter Analysis (Q7)

In this subsection, we answer Q7 by investigating the effect
of the number of UAPs on the attack effectiveness of our
boosting attack methods. We follow the experimental settings
in Section VI-B and use ε = 6. The other experimental details
are as follows.

For HoBA methods, we use K → {1, 5, 10, 50, 100}. When
K → {1, 5, 10}, we set the batch size to ↖ 64

K
↙ and set the

number of training epochs to 100. However, when K = 50,
the maximum batch size computed by ↖ 64

K
↙ is 1, which leads

to extremely long training time; and when K = 100, the
maximum batch size computed by ↖ 64

K
↙ is less than 1 and

thus we cannot train the attack models of HoBA methods. To
address these training issues, when K → {50, 100}, we apply
the Gumbel softmax trick to solve the HoBA-opt problem
in (1). This is achieved by first following the same two steps
described in Section V to convert the HoBA-opt problem to

min
P,ω

N∑

i=1

Eε↔Gumbel(0,1)

[
L(xi, ω1s1 + . . . + ωKsK)

]
,

s.t. ↘ωj↘→ ≃ ε, ⇐j → {1, . . . , K},
(9)

where s is a K-dimensional vector with the j-th entry defined
as

sj =
exp

(
(logPω(xi)j + ϖj) /ϱ

)
∑

K

a=1 exp
(
(logPω(xi)a + ϖa)/ϱ

) , (10)

and ϖ is a K-dimensional vector with each entry ϖj being
an independent random variable following the Gumbel(0, 1)
distribution [39]. Then, the optimization problem in (9) can be
solved following the same steps in Algorithm 3. In this way,
when computing the loss Eε↔Gumbel(0,1)[·] for each training
image xi, we only need to compute the value of the attack

function L(xi, ω1s1 + . . . + ωKsK) for one time by adding
ω1s1 + . . .+ωKsK to xi and then feeding the perturbed image
to the victim DNN. Thus, the number of perturbed images fed
to the victim DNN in one training iteration is independent of
the value of K and equal to the batch size. Since our GPU
can accommodate up to 64 perturbed images at the same time,
for K → {50, 100}, we set the batch size to 64 and set the
number of training epochs to 200.

For HeBA methods, we use H = 5 and R → {1, 2, 10, 20},
meaning the total number of UAPs used by HeBA methods
is H ⇓ R → {5, 10, 50, 100}. We set the batch size to ↖ 64

H
↙,

using 100 training epochs when R → {1, 2} and 200 training
epochs when R → {10, 20}.

Fig. 4 shows the results of FR when using different numbers
of UAPs, where the caption of each subfigure shows the names
of the victim DNN and the single-UAP method. From the
results, we can observe that the FR of all the boosting attack
methods improves when using more UAPs. Such improvement
is significant for HoBA2 when K ≃ 5 and for HeBA2 when
H ⇓R ≃ 10. This is because the UAPs generated by HoBA2
and HeBA2 have good diversity, thus each newly added UAP
will successfully attack more images that cannot be success-
fully attacked by the previous set of UAPs, as illustrated by
the comparison of the Venn diagrams in Figs. 5(a) and 5(b).

However, we can also see from Fig. 4 that, when K > 5 for
HoBA methods and H ⇓ R > 10 for HeBA methods, further
increasing the number of UAPs does not significantly improve
FR. This can be explained by the diminishing marginal utility.
That is, the set of successfully attacked images is already
large when K = 5 for HoBA methods and H ⇓ R = 10
for HeBA methods. Thus, although the UAPs generated by
our methods are still diversified when using more UAPs, it
is likely that any additional UAPs will redundantly target the
same images, as illustrated by the comparison of the Venn
diagrams in Figs. 5(b) and 5(c). As a result, the number of new
images successfully attacked by adding more UAPs diminishes
as the number of UAPs increases.

Additionally, we can see that when the number of UAPs
varies, HoBA2 and HeBA2 consistently outperform their type
1 counterparts, and HeBA2 consistently achieves the highest
FR among all the boosting attack methods. These results fur-
ther consolidate the conclusion in Section VI-F, demonstrating
that when using the same number of UAPs, generating UAPs
with higher diversity will lead to higher attack effectiveness
of the proposed boosting attack framework.

In summary, we can conclude from Fig. 4 that the proposed
boosting attack framework can significantly improve the attack
effectiveness of a single-UAP method by using only a small
number of diversified UAPs.

I. Comparing to Single-UAP with More Training Images (Q8)

In this subsection, we answer Q8 by investigating how the
boosting attack methods perform compared to the single-UAP
methods when the single-UAP methods have more training
images.

Since our boosting attack methods introduce more per-
turbations and the selective neural network that need to be
trained, the training time cost of our methods is generally
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Fig. 4. The FR of the single-UAP methods and the corresponding HoBA and HeBA methods when ε = 6. In each subfigure, the x-axis shows the total
number of UAPs used by different boosting attack methods, which is the value of K for HoBA methods and the value of H ↑ R for HeBA methods. The
dashed horizontal lines are auxiliary lines to show the FR of the single-UAP methods when K = 1. The number following the name “Single-UAP” indicates
that the amount of training images used for the corresponding single-UAP method is 10,000 times that number. We omit the version identifier in the name
of each victim DNN and SquNet is short for SqueezeNet.
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Fig. 5. The Venn diagrams illustrate the sets of target images that can be
successfully attacked by diversified UAPs when the number of UAPs varies.
Each elliptical region in these Venn diagrams represents a set of target images
in the original image space that a UAP can successfully attack. Each triangle
represents a target image in the set.

higher than that of the corresponding single-UAP method. For
more fair comparisons, we increase the number of training
images for the single-UAP methods such that they have a
similar or higher training time cost as our methods when using
different numbers of UAPs. Specifically, given the number
of UAPs, the number of training images for each single-
UAP method is increased to the original number of training
images (i.e., 10,000) multiplied by the number of UAPs. We
follow the experimental setting in Section VI-H. Since the

number of UAPs used in Section VI-H is in {1, 5, 10, 50, 100},
this produces single-UAP methods that use 10,000, 50,000,
100,000, 500,000 and 1,000,000 training images, which are
denoted as single-UAP 1x, single-UAP 5x, single-UAP 10x,
single-UAP 50x and single-UAP 100x, respectively. For all
these single-UAP methods, we set the batch size to 64 and
the number of training epochs to 100. Note that we still use
10,000 training images for our boosting attack methods in all
the cases.

Fig. 4 shows the results of FR, from where we can observe
that each single-UAP 1x method and its corresponding HoBA
methods achieve similar FR at K = 1. This is because when
K = 1, HoBA methods degenerate to the same single-UAP
attacks as the corresponding single-UAP 1x method and their
attack models are trained using the same amount of training
images as that of the single-UAP 1x method.

In addition, we can also see that as the number of training
images increases, the single-UAP methods achieve higher
FR. This indicates that increasing the amount of training
images can improve the attack effectiveness of the single-UAP
methods. However, when the number of training images is
larger than 100,000, adding more training images does not
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TABLE VI
THE TRAINING TIME (MINUTES) OF ALL THE ATTACK METHODS ON RESNET-50 WHEN ε = 6. “W.O.GUMBEL” INDICATES THAT THE HOBA-OPT

PROBLEM IS SOLVED BY ALGORITHM 1 WITHOUT USING THE GUMBEL SOFTMAX TRICK. “W.GUMBEL” INDICATES THAT THE HOBA-OPT PROBLEM IS
SOLVED BY APPLYING THE GUMBEL SOFTMAX TRICK.

Attack method Single-UAP HoBA1 HoBA2 HeBA1 HeBA2 GAP TDA
1x 5x 10x 50x 100x w.o.Gumbel w.Gumbel w.o.Gumbel w.Gumbel

# UAPs 1 1 1 1 1 1 5 10 50 100 1 5 10 50 100 5 10 50 100 5 10 50 100 n/a n/a

# Training images 10,000 50,000 100,000 500,000 1,000,000 10,000 10,000 10,000 10,000 10,000 10,000

UAT 43 197 417 2,107 4,196 95 425 855 2,258 4,356 54 230 454 123 128

648 814 2,377 4,211 287 296 568 576 235 267
DF 45 203 420 2,068 4,185 98 435 885 2,303 4,651 56 239 469 131 137

COS 42 195 415 2,055 4,189 94 430 843 2,231 4,393 55 226 440 128 130
NAG 166 730 1,560 7,636 13,944 221 431 683 328 345 57 232 420 139 152
TRM 52 214 438 2,227 4,245 108 513 972 2,741 5,362 64 278 537 133 137

significantly improve FR. This implies the inherent limitation
of the single-UAP methods, that is, using a single UAP to
attack a wide variety of target images has limited attack
effectiveness even with more training images.

Moreover, as shown in Fig. 4, the best performing single-
UAP method (i.e., single-UAP 100x) underperforms HoBA2
and HeBA2 in most cases when using only 5 UAPs. Table VI
reports the training time of the single-UAP methods and the
boosting attack methods when conducting the experiments in
Fig. 4 on attacking ResNet-50. We can see that due to the large
number of training images, the training time of the single-
UAP 100x method is much higher than that of HoBA2 and
HeBA2 when using 5 UAPs. These results demonstrate that
with similar or even higher training time costs, the attack
effectiveness of the single-UAP methods is still inferior to that
of HoBA2 and HeBA2. This further highlights the superiority
of our boosting attack framework in improving the attack
effectiveness of the single-UAP methods by using a small set
of UAPs. We will discuss the training time of all the attack
methods in detail in Appendix D.

VII. CONCLUSION

In this paper, we propose a novel boosting attack framework
to significantly improve the attack effectiveness of existing
single-UAP methods while maintaining a fast attack speed.
The key idea is to simultaneously train a set of diversified
UAPs and a selective neural network, and use the selective
neural network to choose the most effective UAP when attack-
ing a target image. Extensive experiments show the superior
performance of the proposed boosting attack framework in
different attack settings and against various defenses. We also
reveal that enhancing the diversity of UAPs is the key to
achieving higher attack effectiveness for our framework. In
future work, we will continue to explore novel ways to further
enhance the diversity of UAPs.
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(f) VGG-16, H → R = 10
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(i) ViT-B, H → R = 5

1 50 100 150 200
#Epoch

0.3

0.8

1.3

T
ra

in
in

g
L
os

s

w.Gumbel: 92.7

w.o.Gumbel: 88.5

(j) ViT-B, H → R = 10

1 50 100 150 200
#Epoch

0.2

0.9

1.6

T
ra

in
in

g
L
os

s

w.Gumbel: 93.4

w.o.Gumbel: 79.6

(k) ViT-B, H → R = 50

1 50 100 150 200
#Epoch

0.0

0.6

1.2

1.8

T
ra

in
in

g
L
os

s

w.Gumbel: 93.7

(l) ViT-B, H → R = 100

1 50 100 150 200
#Epoch

0.4

0.8

1.2

T
ra

in
in

g
L
os

s

w.Gumbel: 91.3

w.o.Gumbel: 91.1

(m) Swin-T, H → R = 5
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(p) Swin-T, H → R = 100

Fig. 6. The training loss curves of w.Gumbel and w.o.Gumbel when ω = 6 and H → R ↑ {5, 10, 50, 100}. The numbers in the legend of each subfigure
show the FR achieved by using the trained selective neural network gω and perturbations in P to attack images in the testing dataset D3.

APPENDIX A
COMPARING THE EFFICIENCY OF ALGORITHM 1 AND

ALGORITHM 3

In this section, we investigate the effectiveness of using the
Gumbel softmax trick [39] to improve the training efficiency
of HeBA. In particular, we analyze the training convergence
speed of HeBA when solving the HeBA-opt problem with
and without using the Gumbel softmax trick. We denote by
w.Gumbel the training method that uses the Gumbel softmax
trick, which is described in Algorithm 3; and we denote by
w.o.Gumbel the training method that does not use the Gumbel
softmax trick, which directly solves the HeBA-opt problem in
(2) in the same way as in Algorithm 1.

Fig. 6 shows the training loss curves of w.Gumbel and
w.o.Gumbel when attacking ResNet-50, VGG-16, ViT-B and
Swin-T. In our experiments, we set ω = 6, H = 5 and
R → {1, 2, 10, 20}, thus the total number of UAPs trained
by HeBA is H ↑ R → {5, 10, 50, 100}. For the w.o.Gumbel
method described in Algorithm 1, we set K = H ↑ R such
that it trains the same amount of UAPs as w.Gumbel.

For both w.Gumbel and w.o.Gumbel, we use the maximum
batch size that can be accommodated by our GPU, that is, ↓ 64

K
↔

for w.o.Gumbel and ↓ 64
H
↔ for w.Gumbel. Since K = H ↑ R,

the batch size of w.Gumbel is R times larger than that of

w.o.Gumbel. The root cause of this is that w.Gumbel saves
the memory cost by R times when compared to w.o.Gumbel.

We can observe from Fig. 6 that, when R = 1, w.Gumbel
and w.o.Gumbel converge at a comparable speed. This is
because K = H when R = 1, and therefore w.Gumbel
and w.o.Gumbel use the same batch size. However, when
R > 1, we can see that w.Gumbel converges much faster
than w.o.Gumbel as R increases. This is because w.Gumbel
uses a larger batch size than w.o.Gumbel when R > 1.

We could not report the results of w.o.Gumbel when R = 20
in Fig. 6, since the maximum batch size of w.o.Gumbel,
computed by ↓ 64

5↑20↔, is smaller than 1. This means our
GPU memory is not large enough to accommodate a batch
size of 1 for w.o.Gumbel. However, w.Gumbel still trains
efficiently when R = 20, because its memory cost per batch
is independent of R.

The numbers in the legend of each subfigure in Fig. 6 show
the FR of w.Gumbel and w.o.Gumbel, respectively. The FR
is computed by using the attack model to attack images in
the testing dataset D3. The attack model trained by w.Gumbel
achieves comparable FR to that trained by w.o.Gumbel when
R = 1. However, when R > 1, w.Gumbel achieves a higher
FR than w.o.Gumbel. This is because w.o.Gumbel is struggling
to converge due to the small batch size limited by its high
consumption of GPU memory.
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Fig. 7. The proportion of images in the same class attacked by each of the diversified UAPs. ε1, . . . , ε5 are the five UAPs in Fig. 2(l) (from left to right).
The name under each pie chart is the name of an image class. The area of each colored region shows the proportion of images attacked by one UAP.

APPENDIX B
THE DISTRIBUTION OF IMAGES ATTACKED BY DIFFERENT

UAPS (Q9)
In this section, we answer Q9 by using the five diversified

UAPs generated by HeBA2 as an example to investigate the
distribution of images attacked by each of the diversified
UAPs. Each pie chart in Fig. 7 shows the results for a specific
class. In each pie chart, the five regions show the proportion
of images attacked by the five diversified UAPs ε1, . . . , ε5,
which are visualized in Fig. 2(l) from left to right. The 1,000
classes of images in our testing dataset D3 produce 1,000 pie
charts, which cannot be shown in the paper due to the limited
space. However, we find that these classes generally fall into
six typical categories, thus we give some examples in each
category in Fig. 7.

The first category of classes, such as “Car wheel”, “Tennis
ball” and “Buckle”, is shown in the first column of Fig. 7. For
these classes, the UAP ε1 is selected by the selective neural
network gω to attack most of the images. Such classes are
dominated by ε1, because ε1 is likely the most effective in
attacking the images in these classes. Similarly, the other four
categories of classes shown in the second to fifth columns
of Fig. 7 are dominated by ε2, ε3, ε4 and ε5, respectively.
The sixth category of classes shown in the last column of
Fig. 7 is not significantly dominated by any UAP, because the
proportions of images attacked by each of the five UAPs tend
to be balanced. This is because all the UAPs are comparably
effective in attacking the images in these classes, thus the
selective neural network gω makes a more balanced selection
when attacking images in such classes.

The above results demonstrate an interesting class-specific
property of the diversified UAPs trained by our boosting attack
framework. That is, each diversified UAP is highly effective in

dominating the attack of certain classes, and the sets of classes
dominated by different UAPs are different. Such a property is
the key to the great performance of the proposed boosting
attack framework, because, when the selective neural network
gω chooses the most effective UAP to attack each new image,
the final set of successfully attacked images will be the union
of the images successfully attacked by every UAP.

APPENDIX C
THE IMPACT OF DIFFERENT MODEL ARCHITECTURES OF

THE SELECTIVE NEURAL NETWORK gω (Q10)

In this section, we answer Q10 by investigating the impact
of different model architectures of the selective neural network
gω on the performance of our boosting attack methods. In
particular, we focus on HeBA2 since it generally performs
the best out of all the boosting attack methods, as shown in
Tables II-IV and Fig. 4.

Tables VII and VIII report the results of FR and AAT,
respectively, when using SqueezeNet, ResNet-50, VGG-16
and Inception-V3 as the model architectures of the selective
neural network gω. We follow the experimental settings in Sec-
tion VI-B and use ω = 6. For each of the model architectures,
we adopt its original architecture and use H ↑ R softmax-
activated output neurons in the last layer.

As shown in Table VII, using different model architectures
for gω does not have a significant effect on the FR of HeBA2.
This demonstrates that the attack effectiveness of HeBA2 is not
very sensitive to the choice of gω and HeBA2 can consistently
achieve high attack effectiveness because of the boosting
mechanism used in the proposed boosting attack framework.
However, as shown in Table VIII, choosing SqueezeNet as
gω consistently results in a lower AAT due to its lightweight
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TABLE VII
THE FR (%) OF HEBA2 WHEN USING DIFFERENT MODEL

ARCHITECTURES FOR THE SELECTIVE NEURAL NETWORK gω .

Victim DNN Selective neural network gω

SqueezeNet ResNet-50 VGG-16 Inception-V3

ResNet-50 89.4 89.8 88.9 88.7
VGG-16 96.3 96.0 95.7 95.8

Inception-V3 87.2 87.4 87.0 86.6
SqueezeNet 93.3 92.9 93.5 92.7

ViT-B 89.8 89.5 90.3 89.6
LeViT-128 89.0 89.9 88.7 88.4

Swin-T 91.3 91.4 90.7 89.7
MaxViT-T 90.8 90.7 90.4 90.9

Average 90.9 91.0 90.7 90.3

TABLE VIII
THE AAT (MILLISECONDS) OF HEBA2 WHEN USING DIFFERENT MODEL

ARCHITECTURES FOR THE SELECTIVE NEURAL NETWORK gω .

Victim DNN Selective neural network gω

SqueezeNet ResNet-50 VGG-16 Inception-V3

ResNet-50 2.2 9.0 24.2 12.7
VGG-16 2.2 9.1 24.3 12.7

Inception-V3 2.3 9.1 24.2 12.6
SqueezeNet 2.4 9.0 24.1 12.7

ViT-B 2.3 9.1 24.2 12.7
LeViT-128 2.3 9.0 24.3 12.8

Swin-T 2.4 9.0 24.2 12.7
MaxViT-T 2.3 9.0 24.2 12.7

Average 2.3 9.0 24.2 12.7

network structure. Therefore, we use SqueezeNet as the default
model architecture of gω.

APPENDIX D
THE TRAINING TIME OF ATTACK METHODS (Q11)

In this section, we answer Q11 by discussing the training
time of the proposed boosting attack methods and the baseline
methods reported in Table VI. The training time refers to the
time cost used by each method to train its attack model in an
offline manner. It does not include the time cost to conduct an
attack on a new image.

For the single-UAP methods, Table VI reports their training
time when using different numbers of training images. For
HoBA methods, Table VI reports their training time when K →
{1, 5, 10, 50, 100}. Thus, the “# UAPs” shows the value of K
for each HoBA method. For HeBA methods, Table VI reports
their training time when H = 5 and R → {1, 2, 10, 20}, which
means the total number of UAPs used by HeBA methods is
H ↑ R → {5, 10, 50, 100}. Thus, the “# UAPs” shows the
value of H↑R for each HeBA method. Additionally, Table VI
also reports in the last two columns the training time of GAP
and TDA when conducting the experiments in Section VI-B.
Since GAP and TDA train a DNN-based generator to produce
an image-dependent perturbation for each target image, their
training time is the time cost to train the generator. Thus, the
“# UAPs” is not applicable for GAP and TDA.

Next, we analyze and discuss the reported results in the
following four parts.

Part 1: the training time of the single-UAP methods.
The training time of each single-UAP method is approxi-

mately the training time of the corresponding single-UAP 1x
method multiplied by the ratio between the number of training
images of the single-UAP method and that of the single-UAP
1x method. We explain the reason as follows. Denoted by r
this ratio and by I the total number of training iterations of the
single-UAP 1x method. Since the number of training images
for each single-UAP method is r times that of the single-UAP
1x method, and all the single-UAP methods use the same batch
size and the same number of training epochs, the total number
of training iterations for each single-UAP method is I ↑ r.
Since each training iteration costs a similar amount of time,
the training time of each single-UAP is about r times that of
the single-UAP 1x method.

Part 2: the training time of HoBA methods.
For both HoBA1 and HoBA2, when K → {1, 5, 10}, we

solve the HoBA-opt problem in (1) by Algorithm 1, which
was proposed in our conference paper previously published in
ECCV 2024 [1]. However, since the largest batch size used
by Algorithm 1 is ↓ 64

K
↔, the computed batch size is too small

when K → {50, 100}, which hinders the training of the attack
models for HoBA1 and HoBA2. Therefore, in our journal
paper, we apply the Gumbel softmax trick to solve the HoBA-
opt problem to accommodate K → {50, 100} for HoBA1 and
HoBA2. The implementation details were previously described
in Section VI-H.

As reported in Table VI, the training time of HoBA2
is approximately K times that of the corresponding single-
UAP 1x method when K → {1, 5, 10}. This phenomenon is
caused by the different batch sizes used by the single-UAP 1x
method and HoBA2 when solving the HoBA-opt problem by
Algorithm 1 without using the Gumbel softmax trick. For both
methods, we use the largest batch size that consumes all the
GPU memory. This leads to a batch size of 64 for the single-
UAP 1x method and a batch size of ↓ 64

K
↔ for HoBA2. As a

result, the number of training iterations in each training epoch
of HoBA2 is K times that of the single-UAP 1x method. Since
HoBA2 and the single-UAP 1x method use the same number
of training epochs when K → {1, 5, 10}, the training time of
HoBA2 is approximately K times that of the single-UAP 1x
method.

However, when K → {50, 100}, the training time of HoBA2
is much smaller than K times that of the corresponding
single-UAP 1x method. This is because HoBA2 applies the
Gumbel softmax trick to solve the HoBA-opt problem when
K → {50, 100}. As explained in Section VI-H, using the
Gumbel softmax trick allows HoBA2 to consistently use a
batch size of 64 for different values of K. Therefore, when
K → {50, 100}, the number of training iterations in each
training epoch of HoBA2 is the same as that of the single-
UAP 1x method, which reduces the training time of HoBA2.
Nevertheless, since the number of training epochs is set to 200
for HoBA2 when K → {50, 100} and to 100 for the single-
UAP 1x method, the training time of HoBA2 is still higher
than that of the single-UAP 1x method.

We can also see from Table VI that the training time of
HoBA1 is about 2K times that of the corresponding single-
UAP 1x method when K → {1, 5, 10}. We explain this as
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follows. Denote by E the training time of the single-UAP 1x
method, HoBA1 first trains K UAPs by independently running
the single-UAP 1x method K times, which costs K↑E time.
Then, HoBA1 takes another K↑E time to solve the HoBA-opt
problem by Algorithm 1 without using the Gumbel softmax
trick. Therefore, the overall training time of HoBA1 is about
2K ↑ E when K → {1, 5, 10}.

However, when K → {50, 100}, the training time of HoBA1
is approximately K ↑E. This is because after training the K
UAPs, HoBA1 applies the Gumbel softmax trick to solve the
HoBA-opt problem when K → {50, 100}, which costs much
less time than K↑E. Thus, when K → {50, 100}, the training
time of HoBA1 is mainly dominated by the time to train the
K UAPs, which is K ↑ E.

One special case is the training time of NAG-HoBA1 and
NAG-HoBA2, which does not align with the above analysis.
For NAG-HoBA1, the root cause is that the training time of
NAG is dominated by the time cost to train a DNN-based
generator. NAG-HoBA1 does not independently train K DNN-
based generators; instead, it only trains a single DNN-based
generator and uses it to sample K UAPs. Therefore, denoted
by E the training time of the NAG 1x method, the training time
of NAG-HoBA1 shown in Table VI is less than 2K↑E when
K → {1, 5, 10} and less than K↑E when K → {50, 100}. For
NAG-HoBA2, it has a training time much less than K ↑ E
when K → {1, 5, 10, 50, 100}. This is because the NAG 1x
method costs a lot of time to train the generator; instead, NAG-
HoBA2 only utilizes its fooling loss [22] as the attack function
L(xi, εj) to train the K UAPs and the selective neural network
gω.

Part 3: the training time of HeBA methods.
As shown in Table VI, the training time of HeBA2 stays

stable for different values of H ↑ R when using the same
number of training epochs. For the cases of H ↑ R = 5 and
H ↑ R = 10, where the number of training epochs is set to
100, HeBA2 costs a similar amount of training time in both
cases. For the cases of H ↑R = 50 and H ↑R = 100, where
the number of training epochs is set to 200, HeBA2 also costs
a similar amount of training time in both cases. The reason for
the above phenomenon is that we set the batch size to ↓ 64

H
↔

when training HeBA2. Since the batch size is independent of
R and we set H = 5 for all the experiments, the training
time of HeBA2 stays stable when using the same number of
training epochs.

However, we can also see that the value of H ↑ R affects
the training time of HeBA1. This is because, prior to solving
the HeBA-opt problem, HeBA1 independently runs each of
the five single-UAP 1x methods for R times to train R UAPs.
Consequently, when H = 5 is set as a fixed value, a larger
value of H ↑ R means a larger value of R, which increases
the training time of HeBA1.

Part 4: the training time of GAP and TDA.
As reported in Table VI, the training time of GAP and TDA

is longer than that of the single-UAP 1x methods when using
the same number of training images. This is because, instead
of training a single UAP, they need to train a complicated
DNN-based generator to produce perturbations. The time cost
to train the generator dominates their training time. In addition,
the training time of GAP and TDA is comparable to that of

HoBA2 and HeBA2 when “# UAPs” is 5. However, as shown
in Tables II-IV, when HoBA2 and HeBA2 use 5 UAPs, they
achieve higher attack effectiveness than GAP and TDA in most
cases. Therefore, HoBA2 and HeBA2 are more cost-effective
in terms of the attack effectiveness achieved by consuming a
similar amount of training time.

In summary, since UAP-based attacks, such as the single-
UAP methods and the proposed HoBA and HeBA methods,
are often trained offline in the literature [6], [21], [30], [34],
the training time is often not a big concern for attackers. More
importantly, as shown by the experimental results in Tables II-
IV and Fig. 4, using a small number of 5 UAPs is sufficient
for our boosting attack methods to achieve significant attack
effectiveness. This means the additional offline training time
of our methods is worth the effort of a hacker.

APPENDIX E
ATTACK EFFECTIVENESS IN OBJECT DETECTION (Q12)

In this section, we answer Q12 by investigating the attack
effectiveness of the proposed boosting attack methods in the
object detection task.

For each of our methods and the single-UAP methods,
we follow [24] to extend it to attack a victim detector by
using its attack function L(xi, εj) to measure the similarity
between the predictions of correctly matched objects made
by the victim detector before and after the perturbation εj is
added to the target image xi. The baseline methods GAP and
TDA can be directly applied to attack object detectors without
any extension [28], [29].

We follow the experimental settings in [28]. Specifically,
we adopt the training dataset of PASCAL VOC [57] to train
the attack model of each attack method and adopt the testing
dataset of PASCAL VOC to evaluate the attack effectiveness of
different attack methods. We choose the SSD framework [58]
with 4 different backbones, namely, ResNet-50 [44], VGG-
16 [44], EfficientNet [59], and MobileNet-V3 [60], as the
victim detectors. They are all pretrained on the training dataset
of PASCAL VOC. We evaluate the attack effectiveness of
an attack method against a victim detector by the mean

Average Precision (mAP) [28] of the victim detector achieves
on the testing dataset. A lower mAP indicates worse predictive
performance of the victim detector, and thus implies better
attack effectiveness of that attack method. We report mAP in
percentage by default. The other experimental settings are the
same as in Section VI-B, except that we use ω = 12 for all
the attack methods.

Table IX reports the results of mAP of all the attack
methods. We can see that in all cases, the mAP of our boosting
attack methods is lower than that of the corresponding single-
UAP method. This demonstrates that the proposed boosting
attack framework is also effective in improving the attack ef-
fectiveness of the single-UAP methods in the object detection
task. In addition, we can also observe that the lowest mAP
is consistently achieved by HeBA2 as shown by the bold
numbers in each row of Table IX. Such results are consistent
with those in Tables II-IV and Fig. 4, which demonstrate the
great performance of HeBA2. Moreover, these results also
indicate that when attacking object detectors, enhancing the
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TABLE IX
THE MAP (%) WHEN ω = 12. BOLD NUMBER MARKS THE LOWEST MAP IN EACH ROW. UNDERLINED NUMBER SHOWS THE RUNNER UP PERFORMANCE.

GAP TDA (UAT, HoBA1, HoBA2) (DF, HoBA1, HoBA2) (COS, HoBA1, HoBA2) (NAG, HoBA1, HoBA2) (TRM, HoBA1, HoBA2) (HeBA1, HeBA2)

ResNet-50 23.5 19.5 (25.6, 20.5, 17.3) (26.3, 22.9, 18.0) (26.9, 21.4, 19.6) (28.2, 24.4, 19.7) (27.8, 24.1, 20.0) (18.2, 15.8)
VGG-16 22.0 18.7 (23.2, 19.6, 16.9) (24.7, 20.5, 17.4) (23.1, 19.2, 17.1) (25.4, 21.0, 18.2) (25.5, 22.7, 19.2) (16.5, 14.2)

EfficientNet 18.2 17.2 (22.5, 19.0, 15.7) (22.2, 18.2, 15.4) (21.3, 18.6, 14.9) (24.6, 21.2, 18.7) (22.8, 18.5, 15.9) (16.1, 12.7)
MobileNet-V3 15.7 15.1 (18.2, 15.6, 13.0) (16.3, 13.7, 11.5) (17.4, 15.2, 12.4) (18.8, 15.7, 13.4) (17.2, 14.9, 12.0) (11.6, 9.5)

TABLE X
THE MIOU (%) WHEN ω = 10. BOLD NUMBER MARKS THE LOWEST MIOU IN EACH ROW. UNDERLINED NUMBER SHOWS THE RUNNER UP

PERFORMANCE.

GAP TDA (UAT, HoBA1, HoBA2) (DF, HoBA1, HoBA2) (COS, HoBA1, HoBA2) (NAG, HoBA1, HoBA2) (TRM, HoBA1, HoBA2) (HeBA1, HeBA2)

FCN-Alex 10.7 11.7 (14.5, 12.6, 10.5) (14.2, 11.9, 10.2) (15.0, 13.1, 11.3) (14.7, 12.9, 11.1) (15.1, 13.7, 11.2) (11.0, 9.4)
FCN-8s-VGG 25.6 23.9 (28.5, 24.6, 21.0) (27.8, 24.2, 20.8) (28.2, 25.1, 22.6) (30.5, 25.8, 23.4) (29.2, 25.3, 22.6) (23.3, 20.6)

DL-VGG 36.2 37.6 (40.6, 37.2, 33.0) (38.5, 35.8, 32.2) (38.8, 35.2, 32.8) (41.2, 38.2, 34.5) (40.2, 37.8, 34.0) (34.2, 31.1)
DL-RN101 29.0 27.5 (33.5, 30.2, 28.5) (32.1, 29.4, 26.2) (30.7, 27.3, 25.4) (34.0, 31.8, 28.1) (32.7, 28.9, 26.9) (27.1, 23.9)

diversity of UAPs is still a key factor contributing to the higher
attack effectiveness of the boosting attack framework.

APPENDIX F
ATTACK EFFECTIVENESS IN SEMANTIC SEGMENTATION

(Q13)
In this section, we answer Q13 by examining the attack

effectiveness of the proposed boosting attack methods in the
semantic segmentation task.

We follow [29] to extend our methods and the single-UAP
methods such that they can be applied to attack a victim
segmentation model. Specifically, for each of these methods,
we use its attack function L(xi, εj) to measure the similarity
between the predictions of each pixel made by the victim
segmentation model before and after the perturbation εj is
added to the target images xi. For the baseline methods GAP
and TDA, they can be directly applied to attack segmentation
models without any extension [28], [29].

Following the experimental settings in [29], we use the
training dataset of Cityscapes [61] to train the attack model
of each attack method and use the validation dataset of
Cityscapes to evaluate the attack effectiveness of different at-
tack methods. We choose FCN-Alex [62], FCN-8s-VGG [62],
DL-VGG [63] and DL-RN101 [63] as the victim segmen-
tation models, which are pretrained on the training dataset
of Cityscapes. We use the mean intersection over union

(mIoU) [29] of a victim segmentation model achieves on the
testing dataset as the metric to evaluate the attack effectiveness
of an attack method. A lower mIOU indicates worse predictive
performance of the victim segmentation model, thus implying
better attack effectiveness of that attack method. We report
mIOU in percentage by default. The other experimental set-
tings are the same as in Section VI-B and we use ω = 10 for
all the attack methods.

Table X reports the results of mIOU of all the attack
methods. We can see that when the proposed boosting attack
framework is applied, the mIOU of the single-UAP methods
is significantly decreased. In addition, the mIOU of UAT-
HoBA2, DF-HoBA2 and HeBA2 is almost always lower than
that of GAP and TDA. These results demonstrate the great
performance of the proposed boosting attack methods, indi-
cating that the boosting attack framework is also effective in

improving the attack effectiveness of the single-UAP methods
in the semantic segmentation task. Moreover, we can also see
that the lowest mIOU is consistently achieved by HeBA2 as
shown by the bold numbers in each row of Table X. Such
results highlight the importance of improving the diversity of
UAPs, which is critical when attacking segmentation models
using the proposed boosting attack framework to achieve high
attack effectiveness.

APPENDIX G
POTENTIAL LIMITATIONS (Q14)

Here, we answer Q14 by discussing the potential limitations
of the proposed boosting attack framework.

The boosting attack framework is designed to be gen-
erally applied to existing single-UAP methods, in order to
improve their attack performance. However, existing single-
UAP methods primarily perform in the digital world and how
to effectively apply them to the physical world has not been
systematically studied in the literature [6], [13]–[17], [21]–
[25]. Thus, it remains to be explored to apply the boosting
attack methods in the physical world.

Nevertheless, the key idea of the boosting attack framework
that utilizes multiple diversified perturbations to significantly
improve attack effectiveness has good potential to be extended
for attacks in the physical world. For example, some recent
works [64], [65] have proposed universal adversarial patch

– a small, localized image that, when physically placed any-
where in an input, can mislead a victim DNN into making
a wrong prediction. Such a patch can be directly applied in
the physical world and has shown good attack performance
in a variety of applications such as autonomous driving [66],
face recognition [65], automatic check-out [64], etc. However,
the number of inputs that can be successfully attacked by a
single universal adversarial patch may be limited. Therefore,
the key idea of our boosting attack framework may be applied
to generate multiple diversified universal adversarial patches,
such that the performance of the patch-based attacks in the
physical world can be further improved. We will investigate
this problem in the near future.

Another potential limitation of our boosting attack frame-
work is that UAPs generated for one task (e.g., classification)
are not very effective in launching attacks for another task
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(e.g., object detection) [28], [67]. While our framework has
demonstrated great transfer attack effectiveness within the
same task as shown by the experimental results in Table III, its
attack effectiveness across different tasks is relatively limited.
Nevertheless, we emphasize that the boosting attack frame-
work poses a new and serious security threat to DNNs by re-
vealing a previously unexplored approach that can significantly
enhance the effectiveness of UAP-based attacks against DNNs.
This also offers practical value for more comprehensively
evaluating the robustness of DNNs, thereby motivating future
research into building more secure and robust DNN models.
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