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Abstract—Partial duplicate images often have large non-dupli-
cate regions and small duplicate regions with random rotation,
which lead to the following problems: 1) large number of noisy fea-
tures from the non-duplicate regions; 2) small number of represen-
tative features from the duplicate regions; 3) randomly rotated or
deformed duplicate regions. These problems challenge many con-
tent based image retrieval (CBIR) approaches, since most of them
cannot distinguish the representative features from a large propor-
tion of noisy features in a rotation invariant way. In this paper,
we propose a rotation invariant partial duplicate image retrieval
(PDIR) approach, which effectively and efficiently retrieves the
partial duplicate images by accurately matching the representa-
tive SIFT features. Ourmethod is based on the Combined-Orienta-
tion-Position (COP) consistency graphmodel, which consists of the
following two parts: 1) The COP consistency, which is a rotation in-
variant measurement of the relative spatial consistency among the
candidate matches of SIFT features; it uses a coarse-to-fine family
of evenly sectored polar coordinate systems to softly quantize and
combine the orientations and positions of the SIFT features. 2) The
consistency graph model, which robustly rejects the spatially in-
consistent noisy features by effectively detecting the group of can-
didate feature matches with the largest average COP consistency.
Extensive experiments on five large scale image data sets show
promising retrieval performances.

Index Terms—Combined orientation position, graph model,
image retrieval, partial duplicate, rotation invariant.

I. INTRODUCTION

T HE popularization of smart mobile devices and picture
sharing Web sites have generated a huge number of par-

tial duplicate Web images, producing the need for efficiently
and effectively finding partial duplicate images from large scale
image corpus. Although the previous content based image re-
trieval (CBIR) methods have achieved good improvements in
retrieving the near duplicate images with large area of duplicate
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Fig. 1. Accurate visual word matching via the detection of the spatially con-
sistent feature group. (a)–(b) are two partial duplicate images; (c) is the COP
consistency graph model. The valid visual word matches (green lines) are spa-
tially consistent with each other, hence the corresponding group of green ver-
texes in (c) would form a strongly connected subgraph. The invalid visual word
matches (yellow lines) are not spatially consistent with each other, hence the
corresponding yellow vertexes in (c) would not form any strongly connected
subgraph.

regions, it is still difficult to effectively retrieve the partial du-
plicate images that have small duplicate regions with various
transformations.
Considering Fig. 1(a)–(b) as an example, partial duplicate im-

ages always have large area of non-duplicate regions with com-
plex background content and small area of duplicate regions
with various transformations. Such phenomenons are inevitably
caused by the various image editions applied by different Web
users or the unconstrained picture taking environments when
camera phones are used. Although the near duplicate image
retrieval approaches may work by manually pre-marking and
pre-adjusting the small duplicate regions, it would be more user-
friendly and convenient to directly retrieve the partial duplicate
images in a rotation invariant manner, which is a difficult task
mainly due to the following problems: 1) over-domination: the
small area of duplicate regions result in a small number of valid
feature matches, which might be over-dominated by the large
proportion of false matches from the non-duplicate regions; 2)
random rotations: the partial duplicate regions are often ran-
domly rotated; 3) other variations, whichmainly involves affine
transformations, scalings, color and light changes, etc.

A. Related Work

The problem of content based image retrieval (CBIR) has
been studied for many years. Many well performed methods are
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generally based on local invariant descriptors (such as SIFT [1]).
One well-known work is the bag-of-words (BOW) method [2],
which quantizes the SIFT features [1] into visual words using
the -means algorithm and represents each image by the “term
frequency-inverse document frequency” (tf-idf) histogram of
visual words. The image similarity is evaluated by the similarity
between the corresponding tf-idf histograms; and an inverted
list system is employed to index the whole image database to
ensure fast retrieval speed. The retrieval framework introduced
by the BOWmethod [2] has inspired many good works and a lot
of efforts have been devoted to refine the visual words, exploit
spatial information and so on.
Many works focus on refining the visual words. The vocabu-

lary tree method proposed by Nistér et al. [3] greatly increases
the size of visual word vocabulary by using the hierarchical
-means approach; however, its quantization accuracy is lower
than the flat -means due to the hierarchical mechanism. The
vocabulary tree based approach is further improved by Wang
et al. [4] by utilizing the contextual weighting of local features.
The approximate -means method proposed by Philbin et al. [5]
scales up the flat -means by the nearest neighbor methods; it
is able to generate similarly large vocabulary size as the hierar-
chical -means, while preserving the quantization accuracy of
the flat -means; it also incorporates the spatial information to
further improve the retrieval performance. The hamming signa-
ture proposed by Jegou et al. [6] further refines the visual words
by using binary signatures, whose effectiveness has been proved
by many works. Philbin et al. [7] map each visual region to a
weighted set of visual words, which are further incorporated
with a standard tf-idf architecture; they also introduce a mod-
ified spatial verification method under the case of soft-assign-
ment. Van Gemert et al. [8] demonstrate that the performance
of the bag-of-words model could be further improved by ex-
plicitly modeling the ambiguity of visual word assignment.
While most visual word refining methods aim to increase the

retrieval accuracy, the hashing methods are often developed to
trade accuracy for fast retrieval speed. Mu et al. [9] use random
projections to efficiently generate and aggregate multiple visual
vocabularies, which significantly saves the efforts on clustering
or training. Chum et al. [10] speed up the image retrieval process
by the enhanced min-hash technique, which efficiently exploits
the sophisticated similarity measures in image retrieval. The
method of geometric min-hash [11] outperforms [10] by com-
bining visual words with semi-local geometric information to
construct repeatable hash keys, while preserving the compact-
ness and robustness of [10].
Among the methods that exploit spatial information, the idea

of visual word grouping is proved to be quite effective by many
works. The descriptive visual phrase method [12] bounds visual
words in pairs to learn the more descriptive visual words and vi-
sual phrases (doublets of visual words); however, when dealing
with higher order features such as triplets, quadruplets and so
on, the computational cost increases exponentially. Aiming to
deal with similar feature-order problem encountered in [12],
Zhang et al. [13] propose to identify unbounded-order spatial
features by efficient kernels, which could also be used by kernel-
based learning algorithms. The method of bundled feature [14]
exploits the relative spatial information between SIFT features

by bundling them via the MSER region [15] and measure the
image similarity by accumulating the spatial matching score of
bundled features; this method [14] is further improved by Wu
et al. [16] with an affine invariant geometric constraint. The
geometric-preserving visual phrase method [17] not only con-
siders the co-occurrences of visual words in the neighborhood,
but also captures their local and long-range spatial layouts. An-
other effective idea is to filter the invalid key point matches
by weak geometric constraints. The WGC method [6] inves-
tigates the weak geometric consistencies of scale and rotation
differences between matched key points by quantizing them
into histograms. The E-WGC method [18] enhances WGC by
jointly integrating the clues from scale, rotation and translation.
Xie et al. claim that WGC cannot effectively deal with affine
changes; therefore, they propose the P-WGC method [19] to
further improve the retrieval performances by robustly dealing
with affine change and nonrigid deformation. There are other ef-
fectivemethods as well. Xu et al. [20] gain the robustness to spa-
tial shifts and scale changes by a two-stage matching method.
By projecting the local features of an image to different di-
rections or points, Cao et al. [21] design a family of spatial
bag-of-features to capture the invariance of object translation,
rotation and scaling.
Most of the visual word refining methods achieve good

retrieval performances, which could be further improved by
the weak geometric constraints. Besides, researchers have also
found that using stronger geometric constraints to match the
local features could be another effective way to deal with partial
duplicate Web images [22]–[26]. The full geometric verifica-
tion method of RANSAC [22], [23] identifies the valid key
point matches by estimating the fundamental matrix; it would
be effective when there are sufficient valid matches; however,
as it is claimed by Lowe [1], its performance is poor when
the proportion of valid matches is lower than 50%. Besides,
RANSAC is so time-consuming that it could only be applied
on a few images on the top of the rank list; this makes the final
results highly dependent with the quality of the initial search
system. Spatial coding [24] identifies the valid visual word
matches by verifying the global relative position consistency;
it is much faster than RANSAC and can be applied to all the
images in the rank list. however, due to its assumption that all
duplicate regions share the same spatial layout, it is intrinsically
not rotation invariant; besides, the complementary technique
of doing multiple searches by rotating the query image would
not be so efficient nor robust. The geometric coding method
[25], [26] improves spatial coding [24] in rotation invariancy
by using the SIFT orientations to pre-adjust the visual word
positions; however, as claimed by Zhou et al. [26], it is af-
fected by the detection error of SIFT orientation; hence is less
effective than spatial coding in retrieving non-rotated images.
Both spatial coding and geometric coding measure the image
similarity mainly by the number and proportion of valid visual
word matches; they hard quantize the relative positions of vi-
sual words and identify the valid visual word matches by using
empirical thresholds to iteratively discard the most inconsistent
ones. However, the hard quantization strategy leads to the loss
of useful spatial information and the iterative filtering process
controlled by empirical thresholds limits their generalities in
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dealing with different data sets. The common visual pattern
detection (CVPD) application proposed by Liu et al. [27], [28]
embeds the relative distance information in a graph model
and utilizes the graph shift method [27] to identify the valid
visual word matches. However, the complex graph model,
which consists of an explicit feature pre-matching process and
a computationally expensive process of scale ratio scanning,
leads to a slow matching speed (0.44 seconds to process one
pair of images, as it is reported in [28]); this makes it quite
impractical in dealing with the million scale PDIR problem.

B. The Proposed Method

In this paper, we exploit the relative positions and orienta-
tions of visual words in a pyramid-like soft quantizationmanner,
which robustly gains more spatial information than the hard
quantization process. We also propose a rotation-invariant mea-
surement of the spatial consistency between visual words. By
properly embedding such spatial consistency information into a
graph model, we manage to detect the correctly matched visual
words in a threshold-free manner, which largely improves the
robustness and effectiveness of our method. The contributions
are:
1) We propose the Combined-Orientation-Position (COP)
consistency, which combines the softly quantized relative
orientations and positions of candidate visual words1 by
properly embedding a coarse-to-fine mechanism. The
combination of orientations and positions makes the COP
consistency rotation invariant and strengthens the descrip-
tive power. The coarse-to-fine mechanism improves the
robustness to image deformations and captures more spa-
tial information that would be lost by hard quantization.

2) We properly embed the COP consistency into a consis-
tency graph model (see Fig. 1), where the valid visual word
matches would naturally form a strongly connected sub-
graph; such subgraph is highly robust to outliers and could
be efficiently detected by the threshold-free pairwise clus-
tering method of [29].

3) Ourmethod not only identifies the correctly matched visual
words, but also obtains a continuous evaluation of the spa-
tial consistency between them, which is more robust and
accurate in measuring the image similarity than using the
number or proportion of valid visual word matches.

Compared with other CBIR approaches, the merits of our
method are: 1) It accurately identifies most of the valid visual
word matches by robustly finding the strongly connected sub-
graph of the COP consistency graph, hence it is effective in
alleviating the influence of over-domination. 2) It is robust to
random rotations due to the rotation invariant property of the
COP consistency. 3) For some other image variations, as it is
proved by the experiment results, the proposed method is able
to deal with scale changes and slight affine transformations of
the duplicate image regions.
Justification: Although our method and the CVPD method

[27], [28] both use a graphmodel to detect the correctly matched
key points, there are obvious differences between them: 1) The

1The candidate visual words are initially matched by visual word ID; these
visual word matches inevitably contain many false matches, which could be
filtered out by further processes.

COP consistency graphmodel is embeddedwith completely dif-
ferent spatial information from CVPD; we use the combination
of relative position and orientation, which is naturally robust to
the the scale changes of duplicate regions; CVPD utilizes the
distance ratio, which forces it to scan a wide range of poten-
tial scale ratios to achieve robustness to the scale change. 2)
Our method consists of a single graph and is able to efficiently
identify the most spatially consistent group of candidate feature
matches by the threshold-free pairwise clustering method [29].
Nevertheless, CVPD uses a family of graphs, which employs the
graph shift method [27] in a brute force scanning process to de-
tect the valid feature matches. Besides, the graph shift method is
sensitive to different initializations and depends on the threshold
guided filtering and merging process to identify the common vi-
sual patterns. 3) The two methods have different objectives; our
method aims at efficient retrieval in million scale image data
base and CVPD focuses on multi-object correspondence detec-
tion between two images. Hence, our method is able to retrieve
partial duplicate images from million scale data sets in less than
1 seconds, which may take hours for the CVPD method.

II. THE COP CONSISTENCY

The Combined-Orientation-Position (COP) consistencymea-
sures the mutual spatial consistency of two candidate visual
word matches. It is obtained by matching the COP coordinates
at different levels of quantization accuracies. In this subsection,
we first introduce the COP coordinate. Then illustrate how to
match the COP coordinates between two candidate matches. Fi-
nally, we explain how to calculate the COP consistency.

A. The COP Coordinate

Given two candidate visual words (as in Fig. 2), the COP
coordinate of the visual word is obtained by quantizing and
combining its orientation and position via the COP quantizer
defined by the visual word . As it is shown in Fig. 2(a), the
original point and the principal axis of the COP quantizer are
correspondingly defined by the position and orientation of vi-
sual word . Such COP quantizer consists of the following two
parts: 1) the orientation quantizer (see Fig. 2(b)), which uses an
evenly sectored polar coordinate system with quantitative di-
rections to quantize the orientation of visual word into the ori-
entation coordinate (denoted by ); 2) the position quantizer
(see Fig. 2(c)), which uses evenly sectored regions to quan-
tize the position of visual word into the position coordinate
(denoted by ). Finally, the COP coordinate of is obtained
by (1), which linearly combines the orientation coordinate
and the position coordinate . Note that, the quantization ac-
curacy is controlled by the value of , which is the same for
both the orientation quantizer and the position quantizer.

(1)

Taking Fig. 2 as an example, when given two candidate visual
words and of the same image, the COP coordinate can be
calculated by the following steps:
1) Set the orientation of the visual word as the principal axis
of the COP quantizer and set the position of as the original
point.
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Fig. 2. An illustration of the structure of a COP quantizer with . This
figure also illustrates how to use the COP quantizer to calculate the COP coordi-
nate. (a) The COP quantizer, which is decomposed into the orientation quantizer
(b) and the position quantizer (c). The points and are visual words from the
same image.

2) Use the orientation quantizer to quantize the orientation of
to the nearest quantitative direction. As it is shown by the
green arrow of in Fig. 2(b), the orientation coordinate is

.
3) Use the position quantizer to quantize the position of
to the sectored region that contains it. As it is shown by
the green point of in Fig. 2(c), the position coordinate is

.
4) Combine the orientation coordinate and position coordi-
nate by (1) to obtain the COP coordinate , which is

( in Fig. 2).
Note that: 1) The COP coordinate is rotation invariant, since

the principal axis of the COP quantizer is defined by the ro-
tation invariant orientation of the visual word (or SIFT point).
2) The COP coordinate jointly describes the quantized rela-
tive positions and orientations of candidate visual words, which
strengthens the spatial descriptive power. 3) The COP coor-
dinate does not depend on the distance between visual words,
which is invariant to scale changes and improves the robustness
to slight affine transformations. 4) The COP coordinate is dis-
symmetric; this means that and are not the same, since
they are obtained by different COP quantizers respectively de-
fined by the visual words and .

B. Matching the COP Coordinate

This subsection illustrates the method to match the COP coor-
dinates between two candidate visual word matches
and , where are the visual words from image
and are from image .

(2)

Eqn. (2) is the matching function of the COP coordinates
and , where is calculated in image and is calcu-
lated in image . The binary matching result of indicates
the matching status between and . indicates
that the COP relation between and is consistent with the COP

relation between and , which further implies that the candi-
date match is spatially consistent with . On the contrary,

implies that is spatially inconsistent with .
Note that: 1) the matching result of is rotation invariant,

which is inherited from the rotation invariant property of the
COP coordinate; 2) is dissymmetric due to the dissym-
metric property of the COP coordinate, which means that
may not be equal to ; 3) the accuracy of in indicating
the spatial consistency is controlled by the evenly sectored re-
gion number of the COP quantizer.

C. Embedding the Coarse-to-Fine Mechanism to Evaluate
the COP Consistency

The COP consistency measures the spatial consistency de-
gree between two candidate visual word matches. However, the
degree of the spatial consistency varies much between different
visual word matches due to the variations of duplicate regions,
such as affine transformations, scaling and color changes. Hence
calculating the binary matching result of on a single level
of COP quantization accuracy would lead to the loss of descrip-
tive spatial structure information. In order to robustly capture
more spatial information, we embed the coarse-to-fine mecha-
nism to evaluate the COP consistency.
The COP consistency is evaluated by a set of COP quantizers

with a wide range of quantization accuracies; this increases the
descriptive power of the COP consistency and also improves
its robustness to the variations of duplicate regions. The COP
consistency between and is defined by in (3), which
is the weighted sum of symmetrically averaged matching results
of the COP coordinates that are obtained at different levels of
quantization accuracies.

(3)

(4)

In Eqn. (3), is the matching result of the COP coordi-
nates that are obtained via the COP quantizer with sectored
regions; the parameter is the index of the quantization level,
which simultaneously controls the value of and the weight of
. The parameter is the total number of quantization levels.

Eqn. (4) defines the values of and ; a larger value of
leads to a more accurate matching result, hence corresponds to
a larger weight . Fig. 3 shows the structures of the COP quan-
tizers with , where Fig. 3(a) is the coarsest level with the
lowest weight and Fig. 3(d) is the finest level with the highest
weight.
Note that: 1) the COP consistency is rotation invariant due

to the rotation invariance of the COP coordinate; 2) the COP
consistency is symmetric , which can be easily
derived from (3); 3) the COP consistency is easy to calculate,
since we only need to calculate and for the finest level
and use the down sampling trick of (5) to quickly obtain the
COP coordinates on the coarser levels.

(5)
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Fig. 3. The four levels of COP quantizers when . The COP coordinates
of the levels can be obtained by down sampling the COP coordinate
of the finest level using (5).

In short, the COP consistency is a descriptive rotation in-
variant measurement, which captures more spatial information
by a coarse-to-fine mechanism. It robustly evaluates the relative
spatial consistency of both orientations and positions of visual
words, which further enables us to accurately identify the valid
visual word matches by detecting the spatially consistent key
point group via the consistency graph model.

III. THE CONSISTENCY GRAPH MODEL

This section illustrates how to embed the COP consistency
information into a consistency graph model, where the spatially
consistent group of candidate visual word matches would nat-
urally form a strongly connected subgraph, which consists of a
dominant set of vertexes. Hence, by seeking the dominant set of
vertexes, we can easily identify the spatially consistent visual
word matches, which are the most likely to be validly matched.
We first illustrate the method to construct the consistency graph;
then, provide the definition and explanation of the dominant set;
finally, a threshold-free pairwise clustering method [29] is ap-
plied to efficiently find the dominant set.

A. The Consistency Graph

Given two images and with the set of candidate vi-
sual word matches , the consistency graph is defined as

, where is the vertex set, is the edge set,
is the set of edge weights and is a symmetric connection

matrix that describes the connection structure of graph . De-
tailed definitions are as follows (see Fig. 4 for a demonstration):
• , where the vertex corresponds
to the candidate visual word match . The subscript is
the total number of vertexes, which is also the number of
candidate matches.

• , where is the edge between ver-
texes and . Note that is an undirected graph and all
the vertexes are initially assumed to be connected.

• , where is the weight of the
edge , which is assigned by the value of the COP
consistency between and . Note that .

Fig. 4. An illustration of how to construct the consistency graph. (a) shows
two images of and with three candidate visual word matches and
. (b) shows the corresponding consistency graph; each of its vertexes is a

candidate visual word match and the edge weights are assigned by the COP
consistency between the visual word matches.

• is an -by- symmetric connec-
tion matrix, where is the entry of the -th row and -th
column; is the number of vertexes in . The diagonal ele-
ments of are set to zero to avoid self-loop in the graph .

B. The Dominant Set

The dominant set is originally proposed by [29] to find the
most strongly connected subgraph of an undirected graph. It rep-
resents a set of vertexes by a probabilistic cluster, which is a unit
vector in the space of standard simplex. Then, a quadratic func-
tion is introduced to measure the average edge weight among
them and the dominant set is defined as the subgraph with the
largest average edge weight. In this paper, we refer to such av-
erage edge weight as the dominance of a subgraph. In more
detail:
• The probabilistic cluster is defined as , where

is the space of stan-
dard simplex and is the total number of vertexes in . In
fact, is a unit mapping vector; the value of , which is the
-th bin of , is the probability that the probabilistic cluster
contains the vertex . Particularly, if , whose -th

bin value is 1, then it represents a probabilistic cluster that
contains only the vertex with probability . Any
vertex with is not contained by the cluster.

• The dominance of the probabilistic cluster is defined in
(6), where is the symmetric connection matrix of the
consistency graph .

(6)

We can derive from (6) that ; since
is the average edge weight between vertex

and all the other vertexes in , the dominance can be
regarded as the average weight among the group of vertexes
in . Recall that the vertexes in our consistency graph model
are defined as the candidate visual word matches and the edge
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weights are assigned by the COP consistency, the spatially
consistent group of visual word matches would naturally form
a strongly connected subgraph, which is a dominant set of
vertexes with the maximum dominance. As a result, we can
identify the most spatially consistent visual word matches by
seeking the dominant set of the COP consistency graph and
measure the image similarity by the COP consistency between
them.

C. Seeking the Dominant Set

We use the threshold-free pairwise clustering method of [29]
to robustly seek such dominant set (denoted by ). Pavan et al.
[29] formulate the dominant set seeking problem as a standard
quadratic optimization problem (StQP) [30] (7). It can be solved
by the replicator dynamics method [31] of (8), where is the
probabilistic cluster and indicates the iteration time.

(7)

(8)

For a consistency graph with vertexes, the probabilistic
cluster is initialized as

. Such iteration is easy to implement and easy to calcu-
late; according to the experiment results, it converges in 4 iter-
ations on average for a graph with less than 100 vertexes. Note
that the vertexes (which correspond to the candidate visual word
matches) contained by the dominate set are the most likely
to be the valid visual word matches between the two evaluated
images, and the value of the non-zero bin now indicates the
probability that a candidate visual word match belongs to the
spatially consistent group. We conclude the whole process of
image similarity evaluation via the consistency graph model in
Algorithm 1.
Finally, the image similarity is defined by the corre-

sponding COP consistency of (9), where is the number of
detected valid visual word matches. It measures the similarity
between both the relative orientation and position structures of
the visual words from two images.

(9)

To summarize, the merits of evaluating the image similarity
via the consistency graph model are as follows: 1) the group
of valid visual word matches naturally form the dominant set,
which robustly rejects most of the noisy matches, hence is ef-
fective in alleviating the influence of over-domination; 2) the
accuracy of the subgraph seeking process (8) does not rely on
the number of valid visual word matches, hence would be ro-
bust even with a small number of them. 3) seeking such domi-
nant set does not rely on any empirical threshold, which largely
improves the robustness to different data sets; 4) the proposed
image similarity evaluation method is rotation invariant due to
the rotation invariant property of the COP consistency; 5) the
continuous evaluation of COP consistency enables us to mea-
sure the image similarity in a more robust and accurate way than
using the proportion of validly matched visual words.

Fig. 5. An illustration of the inverted list structure. The green boxes show the
structure of one single list cell.

Algorithm 1: The Similarity Evaluation Process

Input: two images and

Output: image similarity

1. Match the visual words of and by visual word ID
to obtain the set of candidate visual word matches

2. Construct the consistency graph
from (see the definition of in Subsection III.A).

3. Seek the dominant set by (7) and (8).
4. Calculate the image similarity by (9).

IV. THE RETRIEVAL FRAMEWORK

We employ the inverted list structure (Fig. 5) for our large
scale partial duplicate image retrieval system. Such inverted
list is used to quickly find out the set of candidate visual word
matches between the query image and the data base images by
matching the visual word ID. Only the relevant images returned
by scanning the inverted list are further processed by the pro-
posed COP consistency graph model, which significantly re-
duces the retrieval time. Given a query image , we denote the
set of candidate visual word matches between and the -th
data base image by and the retrieval process of the
proposed COP method is illustrated in Algorithm 2.

Algorithm 2: The Retrieval Process

Input: the query image and the inverted list

Output: retrieved image rank list

1. Scan to find out all the sets of candidate visual word
matches .

2. For each , use Algorithm 1 to evaluate the
similarity between and .

3. Rank the similarity scores to obtain the final retrieval
result of .

V. EXPERIMENTS

In this section, we analyze the proposed method on five pub-
lished partial duplicate data sets. We use SIFT [1] as the base
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Fig. 6. An analysis on the insufficiency of the absolute number of the valid
visual word matches. The numbers of valid matches (denoted by ) are drawn
in ascending order to form a continuous line. (a)–(c) show the analysis results
on three image classes from the IPDID data set. (d)–(f) show the analysis results
on three image classes from the Sub-Dupimage data set.

feature for all the retrieval methods. All the experiments are per-
formed on a single core of our common PC with Core2 Quad
CPU (2.67 GHz) and 8 GB memory.

A. Analysis on the Over-Domination

In order to further illustrate the properties of the partial dupli-
cate Web images, we analyze the problem of over-domination
in the following two aspects: 1) the insufficiency of the absolute
number of valid visual word matches; 2) the large proportion
of the false visual word matches. The experimental results in
this subsection are obtained on two published partial duplicate
data sets: the IPDID data set [32] and the Sub-Dupimage data
set [24]. The data set of IPDID contains 10 classes of partial
duplicate images with random rotations, which was developed
by Wu et al. [16] in 2010. The data set of Sub-Dupimage was
constructed by Zhou et al. [24], which contains 23 groups of
partial-duplicate Web images.
The Insufficiency of Valid Matches:We first couple the im-

ages in the same class; then, count the absolute number of the
valid matches (denoted by ) for each pair of them. Fig. 6 shows
the evaluation results on 6 different classes from the two data
sets, where the y-axis indicates the value of and the x-axis in-
dicates the normalized indices of the image pairs. If we set 10
as a threshold number of the valid visual word matches, we can
see from Fig. 6 that 75% image pairs (on average) have less than
10 valid visual word matches. This insufficiency of valid visual
word matches is possibly due to the small area of duplicate re-
gion and the low resolution of Web images. Such insufficiency
challenges the full geometric verification based methods, whose
matching accuracies rely on sufficient number of valid visual
word matches.
The Large Proportion of False Matches: We evaluate the

proportion of false visual word matches (denoted by ) for each
image pair of the same class by (10), where is the absolute
number of valid visual word matches and is the total number
of the visual words matched by the visual word ID. Apparently,
a larger proportion of false visual word matches would result in
a heavier degree of over-domination.

(10)

Fig. 7. An analysis on the proportion of false visual word matches. The values
of false match proportion (denoted by ) are drawn in descending order to form
a continuous line. (a)–(c) show the analysis results on three image classes from
the IPDID data set. (d)–(f) show the analysis results on three image classes from
the Sub-Dupimage data set.

Fig. 7 shows the analysis results of the proportion of false vi-
sual word matches on 6 different classes from the two data sets,
where the y-axis indicates the proportion of the false matches
and the x-axis indicates the normalized indices of the image
pairs. The values of are drawn in descending order to form
a continuous line. If we set 50% as a threshold, we can see from
Fig. 7 that the proportion of false matches in 80% image pairs
(on average) are more than 50%. This phenomenon is mainly
caused by the large proportion of non-duplicate regions (or com-
plex background); it challenges the image retrieval methods that
are not able to effectively distinguish the invalid visual word
matches.
Note that we use the COP method to estimate the value of
for convenience, since it is infeasible to manually count the

value of for thousands of image pairs. In order to obtain a
more accurate evaluation, the image pairs that the COP method
failed to deal with are manually filtered and not counted. We
will also provide analysis on the random rotation problem of
partial duplicate images in Subsection V.E.

B. Feature Matching Analysis

In this subsection, we conduct two experiments to compare
the feature matching performance of the proposed COP method
with three other key point matching based approaches: 1)
RANSAC (RSC) [23], which applies full geometric verifica-
tion by estimating the fundamental matrix. 2) Spatial coding
(SC) [24], which verifies the relative position layout of key
points. 3) Geometric coding (GC) [25], which improves SC for
rotation invariant property. As it is discussed in [1], the fun-
damental matrix solution of RSC obtains a poor performance
when the proportion of false matches is larger than 50%, hence
being affected by the over-domination problem. SC assumes
that all the duplicate objects share the same spatial layout,
hence it is challenged by random rotations. Both SC and GC
hard quantize the relative positions and identify the valid visual
word matches by empirical thresholds, which are not so robust
and would inevitably lead to geometric information loss. The
proposed COP method does not rely on the number of valid
visual word matches and rotation invariantly captures more
spatial information by the COP consistency, hence is robust to
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Fig. 8. The comparison of visual word matching performances between COP method and the other two approaches: the method of RANSAC (RSC) and the
method of spatial coding (SC). Three pairs of images are used: (a) shows a pair of “lena” images with 7 valid visual word matches; (b) shows a pair of “starbucks”
images with 7 valid matches; (c) shows a pair of “abbey road” images with 30 valid matches. Please refer to the color pdf for a better view.

both the influences of over-domination and random rotations;
as is proved by the experiment results, it is also able to deal
with the scale changes and slight affine transformations of
duplicate image regions.
In the first experiment, we utilize three pairs of representative

images (Fig. 8) to analyze the properties of the previously men-
tioned methods in detecting valid key point matches. Fig. 8(a)
shows the visual word matching results between a pair of “lena”
images, where the true number of valid visual word matches is
7. One of the duplicate regions is rotated by about 30 degrees.
As it is shown in Fig. 8(a), GC and COP achieve better matching
performances than the other two methods. This proves the ro-
tation invariant property of both GC and COP. Fig. 8(b) shows
the visual word matching results between a pair of “starbucks”
images, where the true number of valid visual word matches is
7. One of the duplicate regions is rotated by about 45 degrees
with slight affine transformation; the other one is affected by
scale change. We can see that our COP method finds all the
7 valid matches, performing significantly better than the other
methods. This demonstrates the advantage of the COP method
in dealing with random rotations, scale changes and slight affine
transformations. Fig. 8(c) shows the matching results between
a pair of “abbey road” images, where the true number of valid
visual word matches is 30 and the duplicate regions are only
affected by slight scale change. This significantly alleviate the
influences of over-domination and random rotations, hence all
the three methods obtain good matching results. We can see that
the number of valid matches found by COP is nearly two times
more than both the SC and GC methods; this proves the advan-

Fig. 9. The statistics of the key point matching results on the Dupimage data
set. The x-axis marks the name of each image group. The parameter denotes
the average numbers of the valid key point matches on each image group, which
are obtained by the four methods of RSC, SC, GC and COP.

tage of the COP method in capturing more spatial information
than the hard quantization based methods of SC and GC.
We conduct the second experiment on the Dupimage data

set [33], which contains 33 groups of partial duplicate images.
For each image group, we randomly sample 50 image pairs and
manually count the average numbers of matched key points (de-
noted by ) that are identified by each of the four methods. We
can see from the comparative results in Fig. 9 that the proposed
COP method outperforms the other methods on all the image
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groups; this further proves the advantage of COP in capturing
more useful spatial information.
To summarize, comparing with RSC, SC and GC, the

matching performance ofCOP ismore robust to the influences of
over-domination and randomrotations; as is shownby the exper-
iment results, it is also able to deal with scale changes and slight
affine transformations of duplicate regions. These properties
would further improve the performance of our retrieval system.

C. Parameter Analysis

In this subsection, we analyze the influences of two parame-
ters on the retrieval performance of the proposed COP method:
1) the quantization level number; 2) the vocabulary size. The
analysis mainly concerns on the mean average precision (MAP)
and the average retrieval time (ART) on the two data sets of
IPDID and Sub-Dupimage, which are mixed with 1 million dis-
tractive Web images.
Definitions of MAP and ART: Given retrieval results of

ranked image lists with length , the mean average precision
(MAP) could be obtained by (11), which is the mean of the av-
erage precision scores (AP) of all the ranked lists. The AP
score for each ranked list is calculated by (12), where is
the precision at cut-off in the list and is the total number of
relevant images; is an indicator function, which equals 1
if the retrieved image at rank is relevant.

(11)

(12)

The average retrieval time (ART) is obtained by (13), where
is the total number of queries and is the retrieval time

(RT) of the -th query. For each query process, the time con-
sumed by the feature extraction and quantization processes is
not included in the retrieval time (RT), since it is almost the
same for most of the retrieval methods.

(13)

The Influence of Quantization Level Number: The quan-
tization level number affects the accuracy of the COP con-
sistency evaluation, which influences the retrieval performance
by changing the connection structure of the consistency graph
. Fig. 10(a)–(b) show the retrieval performances of the COP

method via different values of . As it is shown in Fig. 10(a),
both the MAP performances increase when the value of in-
creases from to . The reason is that a larger value
of leads to a set of finer quantizers (see Fig. 3), which eval-
uate the COP consistency more accurately. However, the MAP
performances converge to an upper bound when becomes too
large, which may be attributed to the descriptive power bottle-
neck of the COP coordinate. Fig. 10(b) shows the ART perfor-
mances on the two retrieval data sets. We can see that the value
of ART does not vary monotonously with the . This is due to
the influence of on the connection structure of graph , since

Fig. 10. The influences of the quantization number and the vocabulary size
on the retrieval performance. The analysis is applied on both the 1 million sized
retrieval data sets of IPDID and Sub-Dupimage. (a)–(b) show the effects of
on the MAP and ART performances. (c)–(d) show the effects of the vocabulary
size on the MAP and ART. Better viewed in color.

the calculation time of the subgraph seeking process (8) is af-
fected by the connection matrix in a non-monotonic way.
The Influence of Vocabulary Size: The vocabulary size af-

fects the descriptive power of visual word, hence influences the
retrieval performance. Fig. 10(c)–(d) show the retrieval perfor-
mances of the COP method via different vocabulary sizes. As
it is shown in Fig. 10(c), the MAP performances first increase
when the vocabulary size increases from 100 thousand to 500
thousand, then decrease when the vocabulary size increases to
1 million. The reason for the increase of MAP is that higher vi-
sual word descriptive power would prevent more invalid visual
word matches. However, when the vocabulary size becomes too
large, some valid visual word matches would be lost during the
visual word ID matching process (the 1st step of Algorithm 1);
this decreases the matching accuracy of the COP method, hence
decreases the MAP performances. We can see from Fig. 10(d)
that the ART performances decrease monotonously with the in-
crease of vocabulary size. The reason is that the increase of the
visual word descriptive power reduces the number of the candi-
date visual word matches, which further reduces the size of the
connection matrix , hence decreases the iteration time of the
subgraph seeking process (8). We choose the optimal vocabu-
lary size of 1 million for its good MAP performance and fast
retrieval speed.
Note that our COP method has only one system parameter
, which improves the robustness of the whole PDIR system.
Besides, we can infer from Fig. 10(a) that a fixed large value of
would be robust enough to handle many cases.

D. Performance Evaluation

In this subsection, we compare the large scale partial dupli-
cate image retrieval performance of the proposed COP method
with other CBIR methods. The experiments are performed on



CHU et al.: ROBUST SPATIAL CONSISTENCY GRAPH MODEL FOR PARTIAL DUPLICATE IMAGE RETRIEVAL 1991

TABLE I
THE PERFORMANCES ON THE HOLIDAYS/1000 K DATA SET

TABLE II
THE PERFORMANCES ON THE SUB-DUPIMAGE/1000 K DATA SET

TABLE III
THE PERFORMANCES ON THE DUPIMAGE/1000 K DATA SET

TABLE IV
THE PERFORMANCES ON THE IPDID/1000 K DATA SET

TABLE V
THE RETRIEVAL PERFORMANCES ON THE MOBILE DATA SET

five published data sets, which are mixed with 1 million distrac-
tive Web images. All the experiments are performed on a single
core of our common PC with Core2 Quad CPU (2.67 GHz) and
8 GB memory.
On each data set, we first compare COP with the methods of

weak geometric consistency (WGC) [6], bag-of-word baseline
(BL) [2], bundled feature (BD) [14], RANSAC (RSC) [23],
spatial coding (SC) [24] and geometric coding (GC) [25]. Then,
we compare the methods of hamming embedding (HE) [6],
HE WGC and HE COP2 to further analyze the effectiveness
of WGC and COP in improving the retrieval performance of
HE. The methods of ambiguity (AMB) [8] and randomized
locality sensitive vocabulary (RLSV) [9] are additionally
compared as well. Note that, the CVPD method [27], [28] is
not compared, since it is not originally proposed as an image
retrieval method and is computationally impractical in dealing
with million scale PDIR problem.
The parameter settings are as follow: 1) for COP, we use an

optimal vocabulary size of 1 million and the parameter is set
to ; 2) for WGC, BL, BD, RSC, GC and AMB, we use the
optimal vocabulary size of 1 million; 3) for SC, we adopt the op-
timal vocabulary size of 130 thousand as it is reported in [24]; 4)
for RLSV, we use the reported parameters of 12 hash functions
and 20 hash tables; 5) for the experiments in Tables I–V, we use

2The experiment of HE COP is conducted by two steps: 1) use the HE
method to initially obtain the candidate key point matches between two images;
2) apply geometric verification by COP to measure the image similarity.

Fig. 11. The sampled images in the data set of Holidays.

a similar parameter settings as [6], where the vocabulary size
is 262,000 and the hamming distance threshold is optimally set
as . The other parameters follow the reported optimal
values.
Evaluation on the Holidays data set: We choose the Holi-

days data set [6] to analyze the performances of all compared
methods on natural scene images. The Holidays data set was
published by Jegou et al. [6] in 2008. It contains 500 groups of
1491 high resolution images, where the first image in each group
is used as a query. Fig. 11 shows some sampled images from the
Holidays data set. We construct the Holidays/1000 k data set by
mixing 1 million distractive Web images with the ground truth
of the Holidays data set. The retrieval performance is evaluated
by the MAP and ART.
Fig. 12(a) shows the comparison results on the MAP perfor-

mances. As it is shown, the MAP of WGC outperforms both SC
and GC, whose performances are limited by their hard quantiza-
tion and empirical filtering strategies. However, COP achieves
the highest MAP of 0.474, which outperforms WGC by 3.2%;
this is probably due to the robustness of the coarse-to-fine mech-
anism and the accuracy of the dominant set. The MAP perfor-
mances in Table I further prove the advantage of COP in im-
proving the retrieval accuracy of HE. As it is shown, the MAP
of HE and HE WGC is close to the reported values in [6]
(0.48 and 0.52, respectively). However, HE COP further im-
proves the MAP to 0.534, which outperforms HE WGC by
2.5%. We can see from Fig. 12(b) that COP is much faster than
BD and RSC, however it is 0.67 seconds slower than WGC;
this may be caused by the high resolution of the Holidays im-
ages, which inevitably produces a large amount of candidate key
point matches. Nevertheless, since the HE method can effec-
tively and efficiently reduce the number of candidate key point
matches (explained by [6]), it can significantly increase the re-
trieval speed of COP. As a result (see Table I), HE COP is only
0.116 seconds slower than BL.
Evaluation on the Sub-Dupimage Data Set: In order to an-

alyze the effectiveness of COP in retrieving the non-rotated im-
ages, we choose the same data set as the SC method [24]. Such
data set is a subset of the Dupimage data set published by Zhou
et al. [25], [26], [33] hence we refer to it as the Sub-Dupimage
data set. It contains 23 groups of partial duplicate Web im-
ages, most of which are non-rotated images with low resolution.
Fig. 13 shows some image samples of the Sub-Dupimage data
set.
We first generate the Sub-Dupimage/1000 k data set by

mixing 1 million distracter images with the Sub-Dupimage
data set. The results in Fig. 14(a)–(b) and Table II are ob-
tained on this data set. Since the methods of AMB and RLSV
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Fig. 12. The performance comparison results on the Holidays/1000 k data set.
(a) shows the MAP performances. (b) shows the ART performances.

Fig. 13. The sampled images in the data set of Sub-Dupimage.

Fig. 14. The performance comparison results on the retrieval data set
of Sub-Dupimage. (a)–(b) show the MAP and ART performances on the
Sub-Dupimage/1000 k data set. (c)–(d) show the MAP and ART performances
on the Sub-Dupimage/300 k data set.

can only handle 300 thousand images on 8 GB memory, we
compare with them on the Sub-Dupimage/300 k data set (see
Fig. 14(c)–(d)), which is constructed by mixing 300 thousand
distracter images.
Fig. 14(a)–(b) show the comparison results on the

Sub-Dupimage/1000 k data set. As it is shown by Fig. 14(a),
the methods of COP, WGC, SC and GC all achieve much
higher MAP performances than BL; however, the MAP of
BD and RSC are limited by the influence of over domination.
Moreover, due to the accuracy of the dominant set [29] and
the robustness of the coarse-to-fine mechanism in capturing
more geometric information, COP achieves the highest MAP
of 0.792. Note that, comparing with SC, the relatively lower

Fig. 15. The sampled images in the data set of Dupimage.

Fig. 16. The performance comparison results on the Dupimage/1000 k data set.
(a) shows the MAP performances. (b) shows the ART performances.

MAP of GC might be due to the influence of the propagated
orientation detection error (as illustrated in [26]). Fig. 14(b)
shows the corresponding ART performances, we can see that
COP is only 0.132 seconds slower than WGC. Besides, as it is
shown by Fig. 14(c)–(d), COP outperforms AMB and RLSV in
both MAP and ART performances on the Sub-Dupimage/300
k data set.
Table II compares the effectiveness of WGC and COP in im-

proving the retrieval performance of HE. As it is shown, the
MAP of HE COP is 4.5% higher than HE WGC, this further
proves the advantage of COP in improving the retrieval accu-
racy. As for the retrieval speed, HE COP is only 0.089 seconds
slower than BL; this is still due to the speedup effect of HE,
which effectively and efficiently reduces the number of candi-
date key point matches.
Evaluation on the Dupimage Data set: We use the

Dupimage data set [25], [26], [33] to evaluate the performances
of all the compared methods on rotated images. The Dupimage
data set is constructed by expanding the Sub-Dupimage data
set [24] with rotated images. It contains 33 groups of partial
duplicate images, some of which have randomly rotated partial
duplicate regions (see Fig. 15). We use the 1 million distracter
images to construct the Dupimage/1000 k data set, on which
the experimental results in Fig. 16 and Table III are obtained.
Note that, since the Dupimage data set [26] does not provide a
standard query image list, we use all the ground truth images
in the Dupimage data set as query images. However, the com-
parison is still fair since all the methods are tested in the same
experimental environment.
As it is shown in Fig. 16(a), the rotation invariant methods of

COP, WGC and GC all perform well; however, the MAP of SC
is limited by the influence of random rotations. Besides, both
the MAP of BD and RSC are still affected by the over domina-
tion. We can also see that COP achieves the highest MAP per-
formance (0.624); this may prove the robustness and advantage
of COP in retrieving rotated images. Fig. 16(b) shows the ART
performances. As it is shown, although COP is 0.342 seconds
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Fig. 17. The sampled images in the data set of IPDID.

Fig. 18. The performance comparison results on the retrieval data set of IPDID.
(a)–(b) show the MAP and ART performances on the IPDID/1000 k data set.
(c)–(d) show the MAP and ART performances on the IPDID/300 k data set.

slower than BL, the absolute retrieval speed (0.474 seconds per
query) may still be endurable for large scale retrieval system.
The results in Table III further proves the advantage of COP

in improving the retrieval accuracy of HE. As it is shown, the
MAP of HE COP is 4.9% higher than HE WGC. Besides, due
to the speedup effect of HE, the retrieval speed of HE COP is
only 0.088 seconds slower than BL now.
Evaluation on the IPDID Data Set: We choose the IPDID

data set [16], [32] to evaluate the performances of different
PDIR methods in retrieving the user-modified images. The im-
ages in the IPDID data set are obtained by applying various
editions, which properly simulates the various image modifi-
cations applied by Web users. It consists of 10 groups of par-
tial duplicate images, most of which are typical partial dupli-
cate images with randomly rotated, affine-transformed or de-
formed duplicate regions (see Fig. 17). Initially, we construct
the two data sets of IPDID/1000 k and IPDID/300 k by mixing
the ground truth images with 1 million and 300 thousand dis-
tracter Web images respectively. The results in Fig. 18(a)–(b)
and Table IV are obtained on the IPDID/1000 k data set; the re-
sults in Fig. 18(c)–(d) are obtained on the IPDID/300 k data set.
We can see from Fig. 18(a) that all the threemethods ofWGC,

SC and GC do not performmuch better than BL. This may prob-
ably be due to the influence of the affine changes and deforma-
tions of duplicate regions. Besides, both the MAP of BD and
RSC are still limited by the influence of over domination. On the
other hand, COP achieves the highest MAP of 0.451, reaching
9% improvement over BL. This may probably be due to the
robustness of the coarse-to-fine mechanism in measuring the
geometric consistency between key point matches. Fig. 18(b)

Fig. 19. The sampled images in the data set of Mobile.

Fig. 20. The performance comparison results on the retrieval data set of Mo-
bile. (a) shows the top-1 hit rate performances. (b) shows the ART performances.

shows the ART performances. As it is shown, COP is 0.113
seconds slower than WGC; however, considering its significant
MAP improvements, such sacrifice of retrieval speed would be
acceptable. Fig. 18(c)–(d) show the comparison results on the
IPDID/300 k data set. We can see that COP outperforms the
other two methods in both MAP and ART as well.
Table IV shows the experimental results of HE, HE WGC

and HE COP on the IPDID/1000 k data set. We can see
that, comparing with HE, the MAP improvement achieved by
HE WGC is limited. This may be due to the fact that WGC
cannot effectively deal with affine changes (as it is illustrated
by Xie et al. [19]). However, HE COP still achieves an im-
provement of 6.2% over HE; this further proves the advantage
and robustness of COP in improving the retrieval accuracy.
Note that, due to the speedup effect of HE, HE COP is only
0.101 seconds slower than BL.
Evaluation on the Mobile data set: We utilize the Mobile

data set to analyze the retrieval performances of the compared
methods on the images captured by mobile phones. The data set
of Mobile was published by Wang et al. [4], [34] in 2011. There
are 300 objects of movie posters, books and magazine covers in
it, which consists of 300 ground truth images and 2000 query
images. Fig. 19 shows some images from the Mobile data set.
We can see that most of the images are attacked by scalings,
random rotations and affine changes; some of them are even
blurred due to camera shaking. In this experiment, we first con-
struct the Mobile/1000 k data set by mixing 1 million distractive
Web images with the Mobile data set; then, we evaluate the re-
trieval performances of all compared methods by the top-1 hit
rate (THR) (proposed by Wang et al. [4]) and the average re-
trieval time (ART).
Fig. 20(a) shows the comparison results of THR. As it is

shown, COP achieves the highest THR performance of 0.743,
which improves the THR of BL by 27%. The relatively lower
THR performances of SC and GC are due to the limitation
brought by their hard quantization and empirical filtering strate-
gies; while the WGC method may still be affected by the affine
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Fig. 21. Sample results comparing the retrieval performances of the COP method with four other methods of SC, GC, RSC and BL. (a) shows the comparison
results on the precision-recall (PR) performances. (b) shows the query image. (c)–(g) show the top 7 returned images by the four methods, where the irrelevant
images are marked by red dashed bounding boxes. The colored pdf provides a better view.

TABLE VI
THE DETAILED MEMORY STRUCTURE OF THE INVERT LIST CELL

changes of duplicate regions [19]. The ART performances
could be seen from Fig. 20(b), where BL is still faster than the
other geometric-based methods due to its efficient similarity
evaluation scheme. We can also see that COP is 0.155 seconds
slower than WGC; however, considering the significant THR
performance of COP, such relatively small sacrifice of retrieval
speed would be acceptable. The results in Table V further
proves the advantage of COP in improving the THR of HE. We
can see that the THR of HE WGC is still limited by the affine
changes of duplicate regions. Also, due to the speedup effect
of HE, the retrieval speed of HE COP is fast enough for real
time retrieval systems.
Memory Usage Evaluation: Table VI shows the memory

consumption details of the invert list cell structures for COP and
HE COP. In total, COP uses 9 Bytes per cell and HE COP
uses 15 Bytes per cell. Note that, for HE COP, we use 1 Byte
for each of the X and Y positions; this may inevitably lose some
accuracy of the key point position. However, the MAP perfor-
mance of HE COP is not affected so much, which should be
due to the robustness of the coarse-to-fine mechanism.

E. A Sample of the Retrieval Results

Fig. 21 shows a sample of the retrieval results on the IPDID
data set [16], [32], which compares the retrieval performances

between the COP method and the methods of SC, GC, RSC and
BL. As it is shown in Fig. 21(b), the query image depicting
the logo of google has a large area of non-duplicate regions
and a small area of rotated duplicate regions. Fig. 21(c)–(g)
show the top 7 retrieved images of the five methods. We can
see that both COP and GC retrieve 7 relevant images, how-
ever, COP achieves a better precision-recall (PR) performance
(see Fig. 21(a)). The other methods retrieve less relevant images
than the COP method due to the influences of over-domination,
random rotations or the other image variations.
We can also analyze the rotation invariancy of the four

methods from the results of Fig. 21(c)–(g): 1) Both COP and
GC are rotation invariant, hence they are able to retrieve 7
relevant images in Fig. 21(c), (e), whose duplicate regions are
randomly rotated by different degrees. 2) SC is not rotation
invariant due to the assumption that all the duplicate objects
share the same spatial layout; this can be seen in Fig. 21(d)
where the duplicate regions of the top 4 relevant images are all
rotated by a similar degree as the query image. 3) RSC is robust
to random rotations, since the duplicate regions of 2 relevant
images (Fig. 21(f)) are rotated by a different degree; however,
its rotation invariancy is achieved at the cost of sacrificing the
retrieval speed. 4) BL entirely ignores the spatial information
by utilizing the tf-idf histogram, which makes it robust to
random rotations (Fig. 21(g)); however, this largely reduces
its robustness to over-domination, which leads to a poor PR
performance (Fig. 21(a)).

VI. CONCLUSION

In this paper, we propose a rotation invariant PDIR method,
which improves the image retrieval performances by exploiting
the group spatial consistency of visual word matches. We first
propose the Combined-Orientation-Position (COP) consistency
to softly quantize the relative spatial relationship between visual
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word matches in a rotation invariant way; then embed the COP
consistency into a simple consistency graph model to efficiently
find the group ofmost consistent visual words. The high descrip-
tive power of the COP consistency and the noise-proof prop-
erty of the spatially consistent feature group enable us to accu-
rately match the visual words between partial duplicate images,
which is effective in alleviating the influences of over-domina-
tion, random rotations, scale changes and slight affine transfor-
mations. The proposed PDIR system has only one system pa-
rameter, which improves its robustness in dealing with different
data. Our method is also effective in retrieving the near dupli-
cate images with large area of duplicate regions, since the spatial
structure of the near duplicate images could be described by the
COP consistency as well. Moreover, COP could be complemen-
tarily combined with the HE method [6], which significantly in-
creases the retrieval speed of our system.
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