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Abstract —In a social network, even about the same information the excitements between different users are different. If we want to
spread a piece of new information and maximize the expected total amount of excitements, which seed users should we choose? This
problem indeed is substantially different from the renowned influence maximization problem and cannot be tackled using the existing
approaches. In this paper, motivated by the demand in a few interesting applications, we model the novel problem of activity
maximization, and tackle the problem systematically. We first analyze the complexity and the approximability of the problem. We
develop an upper bound and a lower bound that are submodular so that the Sandwich framework can be applied. We then devise a
polling-based randomized algorithm that guarantees a data dependent approximation factor. Our experiments on four real data sets
clearly verify the effectiveness and scalability of our method, as well as the advantage of our method against the other heuristic
methods.
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1 INTRODUCTION

Consider how one can stimulate the discussion about
a topic in a social network as much as possible within a
budget. Based on messages between users in an instant
messaging network, such as Whatsapp and WeChat, one
can model topics and strengths/frequencies of interaction
activities between users. In some situations, one may want
to raise the awareness of a controversial social issue, such
as Trump’s pulling the US out of Trans-Pacific Partnership
(TPP). Within a budget, one wants to spread the information
in the network so that people in the network discuss the
issue as much as possible. Which users should we choose to
start spreading the words?

We model this problem as activity maximization. Given
a propagation network, which records user interaction ac-
tivity strength along each edge, we aim to find an optimal
set of seed users under a given budget, such that starting
information propagation from the seed users leads to the
maximum sum of activity strengths among the influenced
users.

Isn’t this an instance of the well known and well studied
influence maximization problem [1]? The answer is “no”
indeed. Influence maximization selects a seed set of nodes
within a given budget constraint such that the expected
number of nodes influenced by information diffusion is max-
imized. However, to satisfy the requirement that “people
in the network discuss the issue as much as possible”, we
not only want to influence many users, but more impor-
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Fig. 1. A toy example showing the difference between influence maxi-
mization and activity maximization.

tantly also want to maximize the expectation of the sum
of strengths of the interaction activities between influenced
users. Since the activity strength between users differs from
user to user, more influenced users do not necessarily lead
to more interaction activities. Figure 1 shows an example. In
the figure, the orange nodes and the blue nodes are activated
by seed nodes A and B, respectively. The thick edges carry
an activity strength (i.e., weight) of 1.0 and the thin edges
carry a strength of 0.5. Although A can activate more nodes
(13) than B (10), the number of edges between the blue
nodes as well as the blue nodes and B (i.e., the 15 edges
in blue) is more than that between the orange nodes and the
orange nodes and B (i.e., the 13 edges in orange). The total
activity strength activated by B, 13, is substantially more
than the total activity strength activated by A, 8.5.

Activity maximization is a novel problem that is sub-
stantially different from classic influence maximization. Can
we adapt some existing influence maximization methods to
solve the activity maximization problem? Unfortunately, the
answer is no due to the following two major reasons.

First, the activity maximization problem focuses on the
interaction activities between the influenced users. This re-
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quires comprehensive consideration of both the information
diffusion dynamics and the diffusion network structure
formed by the diffusion process. However, existing influ-
ence maximization methods aim to simply maximize the
expected number of the active users and seldom take the
diffusion network structure into consideration.

Second, at the technical level, the objective functions in
the influence maximization problem and the activity maxi-
mization problem proposed here have different properties,
as to be shown in Section 3. Many existing methods for
the influence maximization problem rely on some special
properties, such as submodurarity and supermodurarity,
of the objective function in influence maximization, which
unfortunately do not hold for activity maximization.

Motivated by the interesting application scenarios and
the technical challenges associated, in this paper, we pro-
pose a novel problem, activity maximization, which aims
to maximize the expectation of the total activity among
all active users. A unique novel feature of our problem is
that the optimization objective captures interactions among
active users. We make several contributions.

First, we identify a novel research problem with inter-
esting applications. We propose the novel activity maxi-
mization problem that aims to maximize the expectation
of the overall activities in a social network. To the best of
our knowledge, we are the first to explore the interactions
among active nodes in information propagation.

Second, we assess the challenges of the proposed activity
maximization problem. We show that the activity maximiza-
tion problem is NP-hard under the two most popularly used
information diffusion models, namely the independent cas-
cade (IC) model and the linear threshold (LT) model. We also
prove that computing the activities with respect to a given
set of nodes is #P-hard under both the IC model and the
LT model. Moreover, we show that the objective function of
the problem is neither submodular nor supermodular. The
theoretical results clearly show that the proposed activity
maximization problem cannot be easily solved using the
existing methods for influence maximization. To understand
the feasibility of approximate solutions, we appraise the
approximability of the problem by constructing a reduction
from the densest k-subgraph problem.

Third, to develop practical approximate solutions, we
develop a lower bound and an upper bound of activities.
We prove that maximizing the lower bound or upper bound
is still NP-hard under the IC model and the LT model.
Moreover, computing the lower bound or upper bound
is still #P-hard under the IC model and the LT model.
However, we show the submodularity of the lower bound
and the upper bound, which facilitates approximation.

Fourth, we develop a polling based randomized algo-
rithm. We design a sampling method to obtain an unbiased
estimation of activities. We also show how to efficiently
implement the greedy strategy on the estimate of activities.
We extend the sandwich approximation scheme to prove
that the proposed algorithm has a data dependent approxi-
mation factor.

Last, we verify our algorithm on four real world data
sets. The experimental results confirm the effectiveness and
the efficiency of the proposed algorithm.

TABLE 1
Frequently used notations.

Notation Description
G = (V,E,B) A social network, where each edge

(u, v) ∈ E is associated with a diffusion
model-dependent parameter Bu,v

GS = (VS, ES) The propagation subgraph induced by
seed set S, where VS is the set of all active
nodes and ES = {(u, v) | u ∈ VS ∧ v ∈
VS}

n = |V | The number of nodes in G
Au,v The interaction strength of edge (u, v)
δA(S) The activity of a given seed set S

δL(·), δU (·) The lower bound and the upper bound
respectively

g A “live-edge” graph instance of G
g ∼ G g is sampled from all possible instances

of G
Rg(S) The set of nodes reachable from node set

S in g

gT The transpose graph of g: (u, v) ∈
g iff (v, u) ∈ gT

RgT (v) The reverse reachable (RR) set of node v

H The hypergraph consist of hyperedges
mH The number of the hyperedges in H
D(S) The degree of the node set S in H

The rest of the pager is organized as follows. We formu-
late the activity maximization problem in Section 2. In Sec-
tion 3, we observe several interesting and useful properties
of the proposed problem. We develop a lower bound and an
upper bound in Section 4. In Section 5, we devise the polling
based algorithm. We review the related work in Section 6.
We report the empirical evaluation results in Section 7, and
conclude the paper in Section 8. Table 1 summarizes the
frequently used symbols and their meanings.

2 PROBLEM FORMULATION

In this section, we first review two widely used information
diffusion models, and then give the formal statement of the
activity maximization problem.

2.1 Diffusion Models

The independent cascade (IC) model and the linear thresh-
old (LT) model [1] are the two most widely used information
diffusion models. Our discussion in this paper is based on
these two models. We briefly review them here.

Consider a social network G = (V,E,B), where V is
a set of vertices, E ⊆ V × V is a set of edges, and B is
a diffusion model-dependent parameter. Specifically, in the
IC model, Bu,v is the propagation probability of edge (u, v),
which is the probability that v is activated by u after u is
activated. In the LT model, Bu,v is the influence weight of
edge (u, v), which indicates the importance of u influencing
v.

Both models assume a seed set S ⊆ V . Let St be the
nodes that are activated in step t (t = 0, 1, . . .) and S0 = S.

In the IC model, the information diffusion process un-
folds as follows. At step t + 1, each node v in St has
only one chance to activate each inactive neighbor u with
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the probability Bv,u. The process terminates when no more
nodes can be activated.

In the LT model, the information diffusion process un-
folds as follows. Initially, each node v selects a threshold
θv in range [0, 1] uniformly at random. At step t > 0, an
inactive node v is activated if

∑

w∈N(v)∩( ∪
i<t

Si)
Bw,v ≥ θv.

The process stops at a step t when St = ∅.
Kempe et al. [1] also provided an alternative perspective

of the information diffusion based on “live-edge” graphs.
Given a graph G, each edge is marked as “live” on certain
randomized rules, and the random subgraph obtained from
all live edges and all nodes in V is called the “live-edge”
graph [2]. Kempe et al. [1] proved that we can construct
equivalent “live-edge” graph models for both IC model and
LT model. For the IC model, a “live-edge” graph instance
can be obtained by marking each edge (u, v) as “live” with
probability Bu,v independently. For the LT model, the corre-
sponding rule is: each node v marks at most one incoming
edge (u, v) as “live” with probability 1−

∑

u∈N(v) Bu,v.

2.2 Activity Maximization

The activity maximization problem also considers informa-
tion diffusion in a social network with an extra parameter A.
Each edge (u, v) ∈ E is associated with an activity strength
Au,v . Different from diffusion parameter Bu,v, which indi-
cates how node u influences/activates its neighbor v, Au,v

captures the interaction strength between u and v when they
are both active. The activity strength between a pair of nodes
depends on application scenarios, and take any numerical
domain. For example, one may learn the activity strength
from interaction log data with machine learning methods or
simply use some statistical results as activity strength.

Given a social network G, an information diffusion
model M, and a seed set S, the diffusion process forms
a propagation induced subgraph GS = (VS , ES), where VS

is the set of all active nodes and ES = {(u, v) ∈ E | u ∈
VS ∧v ∈ VS} is the set of all edges whose two endpoints are
both in VS . Then, we can define the activity of a given seed
set S as

δA(S) = E

[

∑

(u,v)∈ES

Au,v

]

(1)

where E[·] is the expectation operator. Since information
diffusion is a stochastic process, we take the expectation
with respect to all possible diffusion instances. The activity
measures the overall interaction strength among the active
nodes and thus can reflect the overall strength of the activity
caused by the information propagated in the social network.

Now, we can formally define the activity maximization
problem as follows. Given a social network G, an informa-
tion diffusion model M, and a budget k, find a seed set S∗

such that

S∗ = arg max
S ⊆ V
|S| = k

δA(S) (2)

From the definition, we can see that activity maximiza-
tion is a discrete optimization problem, just as the traditional
influence maximization problem is. Both diffusion parame-
ter B and activity parameter A are inputs to the problem.

The activity maximization problem tries to find a set of
seed nodes to maximize the activity with given parameter
settings. In the next section, we discuss the problem in gen-
eral. Thus, the solution does no dependent on any specific
settings.

3 PROPERTIES OF ACTIVITY MAXIMIZATION

In this section, we first prove the hardness of the activity
maximization problem. Then we discuss the properties of
the objective function δA(·). Last, we show the approxima-
bility of the problem.

3.1 Hardness Results

We first assess the hardness of the activity maximization
problem.

Theorem 1. Activity maximization is NP-hard under the IC
model and the LT model.

Proof. We prove by reducing from the set cover prob-
lem [3], which is well known in NP-complete. Given a
ground set U = {u1, u2, . . . , un} and a collection of sets
{S1, S2, . . . , Sm} whose union equals the ground set, the
set cover problem is to decide if there exist k sets in S so
that the union equals U .

Given an instance of the set cover problem, we construct
a corresponding graph with 2n + m nodes as follows. We
create a node xi for each set Si, two nodes yj and y′j
for each element uj , and two edges (xi, yj) and (xi, y

′
j)

with propagation probability 1 for the IC model and with
influence weight 1 for the LT model and activity 0 if uj ∈ Si.
We also create an edge between yj and y′j with propagation
probability 0 and activity 1 for each element uj . The infor-
mation diffusion will be a deterministic process, since all
propagation probabilities are either 1 or 0. Therefore, the
set cover problem is equivalent to deciding if there is a set
S of k nodes such that δA(S) = n. The theorem follows
immediately.

Activity maximization is NP-hard. Then, what is the
hardness of computing the activity with respect to a given
seed set S?

Theorem 2. Given a seed set S, computing δA(S) is #P-hard
under the IC model and the LT model.

Proof. We prove by reducing from the influence spread
computation problem, which was proved #P-hard under the
IC model and the LT model [4], [5].

Given an instance of the influence spread computation
problem, we keep the same graph G and influence diffusion
parameters B. We set Au,v = 1 for any u, v ∈ V and
compute x1 = δA(S) in the graph G. Next, we add a
new node v′ for each node v in the graph G and an edge
between v and v′ with propagation probability 1 for the IC
model and with influence weight 1 for the LT model and
activity 1. Now, we obtain a new graph G′ and can compute
x2 = δA(S) in the graph G′. For any newly added node v′,
the only way to be activated is through its only neighbor
v. Moreover, a newly added node v′ will be activated if
its neighbor v is active, since the propagation probability
of the newly added edges is 1. Thus, x2 − x1 is exactly
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Fig. 2. Counter examples

the influence spread in the graph G. The theorem follows
immediately.

In [1], Kempe et al. introduced the triggering model
that generalizes the IC model and the LT model. In the
triggering model, each node v independently chooses a
subset of its neighbors as its “triggering set” according to
some distribution. A node will be activated if at least one
node of its triggering set is active. We can see that the
reduction we construct in the proof of Theorem 2 still holds
for the triggering model. Thus, we have the following result.

Corollary 2.1. Given a seed set S, computing δA(S) is #P-hard
in any triggering model M if computing influence spread is #P-
hard in M.

3.2 Modularity of Objective Functions

The objective function of influence maximization is sub-
modular under the IC model and the LT model. Unfor-
tunately, the objective function in activity maximization is
not submodular. Moreover, we can show that δA(·) is not
supermodular as well.

Theorem 3. δA(·) is not submodular under the IC model and the
LT model.

Proof. We prove by a counter example. Consider Figure 2(a).
The first number in the tuple on each edge represents the
propagation probability for the IC model and the influence
weight for the LT model. The second number is the activity
of the edge. For example, in the counter example 1, (1, 1)
on edge (v1, v2) means Bv1,v2 = 1 and Av1,v2 = 1. In
this example, we have δA({v1}) = 1, δA({v1, v5}) = 5 and
δA({v5}) = 2. That is,

δA({v1})− δA(∅) < δA({v1, v5})− δA({v5})

Therefore, δA(·) is not submodular.

From the counter example in the proof of Theorem 3
(Figure 2(a)), we can see that the reason why δA(·) is not
submodular is the “combination effect” between the newly
added node and the existing seed nodes. For example, If we
add v1 into S when S = ∅, then there is only one active
endpoint for edge (v2, v4) and (v2, v3), that is v2. But if we
add v1 to S when S = {v5}, then both the two endpoints
of edge (v2, v4) and (v2, v3) are active, since v3 and v4 are
activated by v5. The “combination effect” has its roots in
the definition of activity. We only count the activity on the
edges whose two endpoints are both active. As a result, the
newly added node and the existing seed nodes may activate

the two endpoints of an edge together, which leads to a
violation of submodularity.

Theorem 4. δA(·) is not supermodular under the IC model and
the LT model.

Proof. Again, we prove by a counter example. Consider the
counter example 2 in Fig 2(b), we have δA({v2}) = 4,
δA({v1, v2}) = 4 and δA({v1}) = 4. Thus,

δA({v2})− δA(∅) > δA({v2, v1})− δA({v1})

That is, δA(·) is not supermodular.

From the counter example in the proof of Theorem 4
(Figure 2(b)), we can see that the reason why δA(·) is not
supermodular is the “overlap effect” between the newly
added node and the existing seed nodes. The nodes that
the newly added node can activate may have already been
activated by the existing seed nodes, which means that
adding a new node does not bring any marginal gain.

3.3 Approximability

Since δA(·) is neither submodular nor supermodular, we
cannot adopt the standard procedure for optimizing sub-
modular function or supermodular function to get an ap-
proximation solution. To explore the approximability of the
activity maximization problem, we explore the connection
between the activity maximization problem and the densest
k-subgraph extraction problem.

Theorem 5. If there exists a polynomial time algorithm approxi-
mating the activity maximization problem within a ratio of α, then
there exists a polynomial time algorithm that can approximate the
densest k-subgraph problem within a ratio of α.

Proof. We prove by constructing a reduction from the dens-
est k-subgraph problem to the activity maximization prob-
lem. Given a graph and an integer k, the densest k-subgraph
problem is to find a subgraph of exactly k vertices that has
the maximum density. For a subgraph GS = (VS , ES), the

density is defined as |ES|
|VS|

.
Given an instance of the densest k-subgraph problem,

we construct a corresponding instance of the activity maxi-
mization problem. We keep the same graph and set Bu,v = 0
and Au,v = 1 for u, v ∈ V . Then, the activity maximization
problem is to find a set of k vertices and maximize the
number of edges whose both endpoints are in this set. It
is equivalent to maximizing the density since the number of
vertices is constant.

Khot [6] showed that the densest k-subgraph problem
does not admit PTAS1 (Polynomial Time Approximation
Scheme [7]) assuming NP *

⋂

ǫ>0
BPTIME(2n

ǫ

), we im-

mediately have the following result.

Corollary 5.1. There is no PTAS for the activity maximization
problem assuming NP *

⋂

ǫ>0
BPTIME(2n

ǫ

).

In fact, finding a good approximation to the densest k-
subgraph problem is challenging. The current best approxi-
mation ratio of n1/4+ǫ for ǫ > 0 was achieved by Bhaskara

1. A PTAS is an algorithm that returns a solution within a factor 1 +
ǫ of being optimal (or 1 - ǫ for maximization problems) in polynomial
time for any ǫ > 0.
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et al. [8]. It is still unknown if there exists a polynomial time
algorithm that can approximate the densest k-subgraph
problem with a constant factor.

4 LOWER BOUND AND UPPER BOUND

In this section, we first give a lower bound and an upper
bound on activities. Then we discuss the properties of the
lower bound and the upper bound.

4.1 The Bounds

Since the “combination effect” among seed nodes comprises
the submodularity of the objective function δA(·), we try
to develop a lower bound of δA(·) that is submodular by
ignoring the “combination effect”. The major idea is that we
only consider the edges whose two endpoints are activated
by the same seed node. Accordingly, the lower bound can
be defined as

δL(S) = E[
∑

(u,v)∈
⋃

x∈S

E{x}

Au,v] (3)

where E{x} is the set of edges of the propagation subgraph
induced by seed set {x}. Recall that the propagation sub-
graph induced by a seed set consists of the nodes that can
be activated by the seed set. Here, the seed set consists of
only one node x. It is easy to see that δL(S) ≤ δA(S) for
any S ⊆ V , since we ignore the edges whose endpoints are
activated by different seed nodes.

A straightforward way to get an upper bound is to
consider all the edges that have at least one active endpoint.
In this way, the upper bound equals to the activity of edges
that have one active endpoint plus the activity of edges
whose two endpoints are both active. The latter is exactly
the activity we want to compute. Here, we present a tighter
upper bound from the perspective of active nodes, which
can be defined as

δU (S) = E[
∑

v∈VS

w(v)] (4)

where

w(v) =
1

2

∑

u∈N(v)

Au,v.

Given a seed set S, δU (S) equals to the half of the activity
of edges that have one active endpoint plus the activity of
edges whose two endpoints are both active. Thus, δU (S)
is better than the straightforward one. Also, we can see
that the upper bound is essentially a weighted version
of the influence spread, where the weight of node v is
1
2

∑

u∈N(v) Au,v . For the influence spread, w(v) = 1 for each
node v.

4.2 Properties of the Bounds

Using the lower bound and the upper bound, we can
approximate the information activity problem by maximiz-
ing the lower bound and the upper bound [9]. However,
maximizing the lower bound and the upper bound is still
NP-hard.

Theorem 6. Maximizing the lower bound is NP-hard under the
IC model and the LT model.

Proof. We prove by reducing from the NP-complete set
cover problem [3]. We show the reduction constructed in
the proof of Theorem 1 still holds for the lower bound. The
lower bound only considers the edges whose two endpoints
can be activated by the same seed node. In the previous
reduction, for all the edges whose activity is not equal to 0
(the edges between yj and y′j), their two endpoints can be
activated by the same node. Thus, the set cover problem can
be solved by deciding if there is a set S of k nodes such that
δL(S) = n.

Theorem 7. Maximizing the upper bound is NP-hard under the
IC model and the LT model.

Proof. We prove by reducing from the NP-hard influence
maximization problem [1].

Given an instance of the influence maximization prob-
lem, let dmax be the highest degree of the nodes in the
graph G. Then, for each node v in G, we add Nd =
dmax − dv new nodes, v′1, v

′
2, . . . , v

′
Nd

, and Nd new edges,
(v, v′1), (v, v

′
2), . . . , (v, v

′
Nd

). Now we obtain a new graph
G′. We set the propagation probability of the newly added
edges to 0 for the IC model, and set the influence weight of
the newly added edges to 0 for the LT model, and set the
information activity of all the edges in G′ to 2

dmax
.

Then, we have ∀v ∈ V , w(v) = 1, and ∀v′ ∈ V ′ \ V ,
w(v′) = 2

dmax
. Since the propagation probability of all newly

added edges is 0, the newly added nodes can never be

activated. Therefore, we have IG(S) = δG
′

U (S), ∀S ⊆ V ,
where I(S) is the influence spread of a give seed set S in G
and δG

′

U (S) is the upper bound in G′.

Next, we prove that S∗
U = argmax δG

′

U (S) does not
contain any newly added nodes. If there is any newly
added node in S∗

U , we can always replace it with a node
in V \ S∗

U and increase the value of the objective function.
Thus, if S∗

U is the optimal solution of maximizing the upper
bound in G′, it must be the optimal solution of the influence
maximization in G.

Although maximizing the lower bound and the upper
bound is NP-hard, the objective functions of the lower
bound and the upper bound are submodular.

Theorem 8. δL(·) is submodular under the IC model and the LT
model.

Proof. Given a graph G and an influence diffusion model,
either the IC model or the LT model, we can construct “live-
edge” graphs for G using the methods proposed in [1]. Let
g be a “live-edge” graph instance. Denote by Pr(g) the
probability that g is selected from all possible instances.
Let Eg(S) be the set of edges whose two endpoints can be
reachable from the same node in the seed set S. Then we
can rewrite δL(S) to

δL(S) =
∑

g∼G

Pr(g)
∑

(u,v)∈Eg(S)

Au,v

We only need to prove Q(S) =
∑

(u,v)∈Eg(S)

Au,v is submod-

ular for any “live-edge” graph instance g, since an non-
negative linear combination of submodular functions is also
submodular.

To prove, let M and N be two sets such that M ⊆ N ⊆
V . For any v ∈ V \ N , consider the difference between
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Q(M ∪ {v}) and Q(M). It must be contributed from the
edges whose two endpoints can be reachable from v but
cannot be reachable from the nodes in M . These edges must
be a super set of the edges whose two endpoints can be
reachable from v but cannot be reachable from the nodes in
N , since M ⊆ N . It follows that Q(M ∪ {v}) − Q(M) ≥
Q(N ∪ {v}) − Q(N). Therefore, Q(S) is submodular and
the theorem follows.

Theorem 9. δU (·) is submodular under the IC model and the LT
model.

Proof. We can prove the theorem by the same “live-edge”
technique used in the proof of Theorem 8. Let Rg(S) be
the set of nodes reachable from S in g. Then, δU (S) can be
rewritten to

δU (S) =
∑

g∼G

Pr(g)
∑

v∈Rg(S)

w(v)

The way to prove that Q′(S) =
∑

v∈Rg(S)

w(v) is sub-

modular is similar to the proof of Q(S) in Theorem 8. The
nodes that can be reachable from v but cannot be reachable
from the nodes in M must be a super set of the nodes
that can be reachable from v but cannot be reachable from
the nodes in N . It follows that Q′(M ∪ {v}) − Q′(M) ≥
Q′(N ∪ {v})−Q′(N). Therefore, Q′(S) is submodular and
the theorem follows.

Theorems 8 and 9 are good news. With the submodu-
larity we can adopt the standard procedure for optimizing
submodular functions to obtain an approximation solu-
tion [10]. One challenge remains. Applying the algorithm
proposed in [10] requires evaluating the lower bound and
the upper bound. However, computing the lower bound
and the upper bound with respect to a given seed set is
unfortunately #P-hard.

Theorem 10. Given a seed set S, computing δL(S) is #P-hard
under the IC and the LT model.

Proof. We prove by reducing from the influence spread com-
putation problem. We show that the reduction we construct
in the proof of Theorem 2 still holds for the lower bound
case. Let y1 = δL(S) in the graph G and y2 = δL(S) in
the graph G′. Since the propagation probability of the edge
(v, v′) is 1 for the IC model and the influence weight of the
edge (v, v′) is 1 for the LT model, v and v′ can be activated
by the same seed node. It follows that y2 − y1 is also the
influence spread in the graph G.

Theorem 11. Given a seed set S, computing δU (S) is #P-hard
under the IC and the LT model.

Proof. We prove by reducing from the influence spread com-
putation problem. The reduction is the same as the one in
the proof of Theorem 7. We already showed IG(S) = δG

′

U (S)
for any seed set S ⊆ V . Therefore, the theorem follows
immediately.

Since computing the activity, the lower bound and the
upper bound is #P-hard, we will discuss how to estimate
them in the next section.

5 A POLLING BASED METHOD

Recently, a polling based algorithmic framework [11], [12]
was proposed for the influence maximization problem. The
framework includes two steps. In the first step, it estimates
the influence spread through sampling. In the second step,
it finds an approximation solution for maximizing the esti-
mate. If we can bound the estimation error, then the solution
also enjoys an approximation guarantee for the influence
maximization problem. To solve the activity maximization
problem, we also design a polling based method.

5.1 Estimation

In a social network G, given an information diffusion model,
either the IC model or the LT model, and a seed set S, let
g be a “live-edge” graph instance of G and Rg(S) be the
set of nodes reachable from S in g. Denote by RgT (v) the
reverse reachable (RR) set [13] for node v in g, where gT is
the transpose graph [11] of g: (u, v) ∈ g iff (v, u) ∈ gT . We
write (u, v) ∼ E to indicate that we randomly pick (u, v)
from E as a sample according to a certain distribution. The
meaning of v ∼ V is similar.

To estimate the activity, we first have the following
result.

Theorem 12. For any seed set S ⊆ V ,

δA(S) = T · Pr
g∼G,(u,v)∼E

[

S∩RgT (u) 6= ∅∧S∩RgT (v) 6= ∅

]

,

where T =
∑

(u,v)∈E Au,v .

Proof.

δA(S) = E

[

∑

(u,v)∈ES

Au,v

]

=
∑

(u,v)∈E

Pr

[

(u, v) ∈ ES

]

Au,v

=
∑

(u,v)∈E

Pr
g∼G

[

u ∈ Rg(S) ∧ v ∈ Rg(S)

]

Au,v

=
∑

(u,v)∈E

Pr
g∼G

[

∃w1, w2 ∈ S,w1 ∈ RgT (u)∧

w2 ∈ RgT (v)

]

Au,v

= T ·
∑

(u,v)∈E

Pr
g∼G

[

∃w1, w2 ∈ S,w1 ∈ RgT (u)∧

w2 ∈ RgT (v)

]

Au,v

T
(5)

= T · Pr
g∼G,(u,v)∼E

[

∃w1, w2 ∈ S,w1 ∈ RgT (u)∧

w2 ∈ RgT (v)
]

= T · Pr
g∼G,(u,v)∼E

[

S ∩RgT (u) 6= ∅ ∧ S ∩RgT (v) 6= ∅
]

Eq. 5 is the expected probability with respect to the
activity distribution of edges, where the probability for edge

(u, v) is
Au,v

T .
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Fig. 3. Hyperedge for activities

Input: Social network G = (V,E,B), A and diffusion
model M

Output: A hyperedge E

1: Initialize E = (∅, ∅)
2: Pick an edge (u, v) with probability

Au,v

T .
3: Generate a “live-edge” graph g according to M
4: Let N1 = RgT (u) and N2 = RgT (v)
5: Let E = (N1, N2)
6: return E

Algorithm 1: Generate Hyperedges

The intuition of Theorem 12 is that if a seed set S
has a high activity value, then the probability that S is
simultaneously reachable from both two endpoints of a
randomly picked edge in a randomly picked “live-edge”
graph instance is high, since we only count the activity on
the edges whose two endpoints are both active. Theorem 12
implies that we can estimate δA(S) by estimating the prob-
ability of the event S ∩ RgT (u) 6= ∅ ∧ S ∩ RgT (v) 6= ∅.
To achieve the estimation, we conduct a poll as follows.

We select an edge (u, v) with probability
Au,v

T , and run
Monte Carlo simulation of the “live-edge” process. During
the process, we record all the nodes that can reach u and v
through “live” edges. Algorithm 1 summarizes the process.

One critical observation is that we do not need to con-
duct the “live-edge” process on the entire graph. Instead, we
can simulate the process starting from u and v, respectively.
We only need to make sure that each edge is marked consis-
tently as the same status (“live” or “blocked”) in these two
simulations. We call the pair of two RR sets obtained from a
poll a hyperedge. All the generated hyperedges constitute a
hypergraph H.

Denote by mH the number of the hyperedges in H. If a
node v appears in both RR sets of a hyperedge E , E is said
to be fully covered by v. If a node v only appears in one of the
two RR sets of a hyperedge E , E is said to be partially covered
by v. Denote by D(S) the degree of the set of nodes S, which
is the number of hyperedges in H that can be fully covered

by S. According to Theorem 12, T · D(S)
mH

is an unbiased
estimator of δA(S) for any fixed mH . Please note that there
also exists “combination effect” between nodes in this case.
For example, in the left part of Figure 3, v1 only appears
in the first RR set of hyperedge E and v4 only appears in
the second RR set. v1 and v4, respectively, partially covers
E . But E is fully covered by the combination of v1 and v4.
Thus, similar to δA(·), D(·) is not submodular neither.

Similarly, for the lower bound and the upper bound, we
have the following two results.

Theorem 13. For any seed set S ⊆ V ,

δL(S) = T · Pr
g∼G,(u,v)∼E

[

S ∩ (RgT (u) ∩RgT (v)) 6= ∅
]

,

where T =
∑

(u,v)∈E Au,v .

Proof. The lower bound only considers the edges whose two
endpoints can be activated by the same seed node. Thus, to
prove the theorem, we only need to let w1 = w2 in the proof
of Theorem 12, that is

δL(S) =T · Pr
g∼G,(u,v)∼E

[

∃w ∈ S,w ∈ RgT (u) ∧ w ∈ RgT (v)
]

=T · Pr
g∼G,(u,v)∼E

[

S ∩ (RgT (u) ∩RgT (v)) 6= ∅
]

Using Theorem 13, we can estimate the lower bound
using essentially the same sampling process as the activity.
The only difference is that there is only one node set in the
hyperedge for the lower bound, that is N1 ∩ N2. In this
case, a hyperedge E is covered by node v if and only if
v ∈ N1 ∩N2.

Theorem 14. For any seed set S ⊆ V ,

δU (S) = W · Pr
g∼G,v∼V

[

S ∩RgT (v) 6= ∅
]

,

where W =
∑

v∈V w(v).

Proof. The upper bound is essentially a weighted variation
of the influence spread. Thus, we can apply the proof
proposed in [14].

There is also only one node set in the hyperedge for
the upper bound. We can generate the hyperedge using the
sampling method proposed in [14].

Since we can estimate the objective function (δA(·), δL(·)
or δU (·)) by the degrees of the set of nodes, we can regard
H as encoding an approximation to the objective function.
With the estimate of the objective function, we go to the
second step of the polling based framework, that is, max-
imizing the estimate. To achieve this goal, we adopt the
simple but powerful greedy strategy, which picks the node
with the largest marginal gain (the increase of degree in H
for our case) iteratively. Next, we show how to efficiently
implement a greedy strategy on the hypergraph.

5.2 Efficient Implementation of the Greedy Strategy

For the lower bound and the upper bound, there is only one
node set in each hyperedge. Thus, we can use the standard
greedy algorithm for maximum coverage problem to obtain
an approximate solution [13]. However, there are two node
sets in the hyperedge for the activity maximization problem.
A hyperedge can be fully or partially covered by a node or a
node set. Thus, we cannot directly apply the greedy strategy.
To tackle this issue, here we discuss how to efficiently
implement the greedy strategy on the hypergraph.

First, we store the original hyperedges of two RR sets
in a more efficient manner. There are three sets, n1, n2 and
n3 for each hyperedge E , where n1 and n2 are the sets of
nodes that can only cover the first and second RR set of E ,
respectively, and n3 is the set of nodes that can cover both
two RR sets of E . Figure 3 illustrates the idea.
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Then, we build an inverted index for each node. There
are three sets, e1, e2 and e3 for each node v, where e1 and e2
are the sets of hyperedges whose first and second RR set can
be covered by v, respectively, and e3 is the set of hyperedges
that can be fully covered by v.

Third, we maintain a global data structure to record the
current covered hyperedges. There are also three sets, E1,
E2 and E3, in this data structure, where E1 and E2 are
the sets of hyperedges whose first and second RR sets have
been covered, respectively, and E3 is the set of hyperedges
that have been fully covered. Figure 4 shows these two data
structures. With these data structures, we have the following
fact.

Fact 1. Given a seed set S, for each vertex v ∈ V \S, the marginal
gain D(S ∪ {v})−D(S) is

MG(v) = |v.e3 \ E3|+ |v.e1 ∩ E2|+ |v.e2 ∩ E1| (6)

RATIONALE. If we add a node v to the current seed set S, the
newly covered hyperedges can be divided into two groups.
The first group is the hyperedges that can be covered by v
alone but not covered by S, that is v.e3 \ E3. The second
group is the hyperedges that are partially covered by S and
are fully covered if v is added to S, that is v.e1 ∩ E2 and
v.e2 ∩E1.

Fact 1 implies that we can pick the node with the largest
marginal gain in each iteration and then incrementally
update the marginal gains of the rest nodes. Algorithm 2
describes the details.

Here, we briefly explain how to incrementally update
the marginal gain. Assuming E1, E2 and E3 are updated to
E′

1, E′
2, and E′

3, respectively, we update the marginal gains
as follows. For each hyperedge E ∈ E′

1 \ E1, we increase
the marginal gains of the nodes in E .n2 by 1. For each
hyperedge E ∈ E′

2 \ E2, we increase the marginal gains
of the nodes in E .n1 by 1. For each hyperedge E ∈ E′

3 \ E3,
we first decrease the marginal gains of the nodes in E .n3 by
1. Then, we decrease the marginal gains of the nodes in E .n2

by 1 if E ∈ E1, and decrease the marginal gains of the nodes
in E .n1 by 1 if E ∈ E2.

Now, the only remaining question is to decide how many
hyperedges we need to sample, which will be addressed
next.

5.3 Sample Complexity

In this subsection, we discuss how to use a sample of
proper size to restrict the estimate error of the activity, the
lower bound and the upper bound. With the technique, we
show that the polling algorithm can provide an approximate

Input: Social network G, Hypergraph H and budget k
Output: Seed set S

1: Initialize S = E1 = E2 = E3 = ∅
2: for v ∈ V do
3: MG(v) = |v.e|
4: end for
5: while |S| < k do
6: v = argmaxu∈V \S MG(u)
7: S = S ∪ {v}
8: update E1, E2, and E3

9: for u ∈ V \ S do
10: update MG(u) according to Eq. 6
11: end for
12: end while
13: return S

Algorithm 2: Maximum Coverage on Hypergraph

solution to maximizing the lower bound and the upper
bound.

To bound the estimate error of the polling method, we
have the following lemma from [15].

Lemma 1. Let Z1, Z2, . . . be independently and identically
distributed according to Z in the interval [0, 1] with mean µZ .

Let S =
∑N

i=0 ZN and µ̂Z = S
N . Let Υ = 4(e − 2) ln(2/δ)ǫ2

and Υ1 = 1 + (1 + ǫ)Υ. If N is the number of samples
when S >= Υ1, then Pr[|µ̂Z − µZ | ≤ ǫµZ ] > 1 − δ and
E[N ] ≤ Υ1/µZ .

Lemma 1 provides a stopping condition for the sam-
pling process. Given a seed set S, we can keep sampling

hyperedges until D(S) ≥ Υ1. Then, T · D(S)
mH

is an (ǫ, δ)
estimation [16] of δA(S). The analysis is similar in the cases
of the lower bound and the upper bound.

Nguyen et al. [17] analyzed the conditions that the
polling algorithmic framework must meet to obtain an
approximation solution. Let S∗ be the optimal seed set

and Ŝ be the seed set returned by the greedy strategy on
the estimate of the objective function f(·) (δL(·) or δU (·)).
Denote by f̂(·) the estimate of the objective function f(·).
The conditions are

Pr[f̂ (Ŝ) ≤ (1 + ǫ1)f(Ŝ)] ≥ 1− δ1 (7)

Pr[f̂(S∗) ≥ (1 − ǫ2)f(S
∗)] ≥ 1− δ2 (8)

where δ1 + δ2 ≤ δ and ǫ1 + (1 − 1/e)ǫ2 ≤ ǫ. Let N be
the number of samples such that both Eq. 7 and Eq. 8 are
guaranteed. Then we have the following lemma from [17].

Lemma 2. Given a social network G, if the number of hyperedges

mH ≥ N , then the polling algorithm returns Ŝ satisfying

Pr[f(Ŝ) ≥ (1−1/e−ǫ)f(S∗)] ≥ 1−δ and Ŝ is an (1−1/e−ǫ)
approximate solution.

Using Lemmas 1 and 2, to obtain an approximation
solution to maximizing the lower bound or upper bound,
we can keep sampling hyperedges and checking if the
conditions are met. SSA algorithm from [17] describes the
process.

Using SSA algorithm, we can provide a (1 − 1/e − ǫ)
approximation solution to maximizing the lower bound and
the upper bound with probability of at least 1 − δ. But
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1: Let SU be a α approximation to the upper bound
2: Let SL be a β approximation to the lower bound
3: Let SA be a solution to the original problem

4: δ̂A(·) is a multiplicative γ-error estimate of δA(·)
5: S = argmaxS0∈{SU ,SL,SA} δ̂A(S0)
6: return S

Algorithm 3: Sandwich Approximation Framework

we must point out that the analysis does not hold for the
activity maximization problem. This is because a necessary
condition of the polling algorithmic framework is that we
can approximate the estimate using the greedy strategy. The
condition is not met in the case of the activity maximization
problem, since the estimate of the activity is not submodular.
Thus, the polling algorithm cannot provide an approxima-
tion solution to the activity maximization problem. But it is
still a good heuristic for the activity maximization problem.
Furthermore, by combining the approximation algorithm
for the lower bound and the upper bound, we can derive
a data dependent approximation scheme for the activity
maximization problem.

5.4 Data Dependent Approximation

There is no general way to optimize or approximate a non-
submodular function. Lu et al. [9] proposed a sandwich
approximation strategy, which approximates the objective
function by approximating its lower bound and upper
bound. The sandwich approximation strategy works as fol-
lows. First, we find a solution to the original problem with
any strategy. Second, we find an approximate solution to the
lower bound and the upper bound, respectively. Last, we
return the solution that has the best result for the original
problem.

Here, we extend the strategy to the case in which the
objective function is intractable and have the following
result.

Theorem 15. Let S be the seed set returned by Algorithm 3, then
we have

δA(S) ≥ max
{δA(SU )

δU (SU )
α,

δL(S
∗
L)

δA(S∗
A)

β
}1− γ

1 + γ
δA(S

∗
A) (9)

Proof. Let S∗
L, S∗

U and S∗
A be the optimal solutions to maxi-

mizing the lower bound, the upper bound and the activity,
respectively. Then, we have

δA(SU ) =
δA(SU )

δU (SU )
δU (SU ) ≥

δA(SU )

δU (SU )
· α · δU (S

∗
U )

≥
δA(SU )

δU (SU )
· α · δU (S

∗
A) ≥

δA(SU )

δU (SU )
· α · δA(S

∗
A)

δA(SL) ≥ δL(SL) ≥ β · δL(S
∗
L) ≥

δL(S
∗
L)

δA(S∗
A)

· β · δA(S
∗
A)

Let Smax = argmaxS0∈{SU ,SL,SA} δA(S0), then

δA(Smax) ≥ max
{ δA(SU )

δU (SU )
α,

δL(S
∗
L)

δA(S∗
A)

β
}

δA(S
∗
A)

Since ∀S0 ∈ {SU , SL, SA}, |δ̂A(S0)−δA(S0)| ≤ γδA(S0), we
have (1 + γ)δA(S) ≥ (1− γ)δA(Smax). It follows that

δA(S) ≥
(1− γ)

(1 + γ)
δA(Smax)

Theorem 15 indicates that we can approximate the activ-
ity maximization problem within a factor that is dependent
on the data. Since it is #P-hard to compute δA(·) and δU (·),
and is NP-hard to find S∗

L and S∗
A, we cannot compute

the exact approximation factor. But we can estimate δA(SU )
δU (SU )

by computing its lower bound (1−γ)δ̂A(SU )

(1+γ)δ̂U (SU )
. It follows that

(1−γ)2

(1+γ)2 · α · δ̂A(SU )

δ̂U (SU )
is a computable lower bound of the

approximation factor.
Now, we put all the pieces of the puzzle together. We

first adopt the polling algorithm to maximize the lower
bound and the upper bound. As discussed in Section 5.3,
it provides (1− 1/e− ǫ) approximate solutions to the lower
bound and the upper bound, respectively. Consequently, we
have α = β = (1 − 1

e − ǫ) in Algorithm 3. Then, we also
use the polling algorithm to get a heuristic solution (SA)
to the activity maximization problem. Last, we get a (γ, δ)
estimation of δA(·) based on Lemma 1 to complete Line 5
of Algorithm 3. According to Theorem 15, the sandwich
algorithm returns a seed set S such that

δA(S) ≥ max
{ δA(SU )

δU (SU )
,
δL(S

∗
L)

δA(S∗
A)

}1− γ

1 + γ
(1 −

1

e
− ǫ)δA(S

∗
A)

6 RELATED WORK

Domingos and Richardson [18] first exploited the influence
between users in social networks for viral marketing. The
key idea behind viral marketing is that, by targeting on
only a small number of individuals (in practice, for example,
persuading them to adopt the product), we can trigger a
large cascade of (product) adoption spreading in a social
network. Kempe et al. [1] formulated the problem as a
discrete optimization problem, which is also well known
as the influence maximization problem. The influence maxi-
mization problem aims to optimize the influence spread (the
expected number of active nodes) in a given information
diffusion model, such as the IC model and the LT model.
Due to its important applications in viral marketing and
some other areas, it has drawn much attention from both
academia and industry [19], [20], [21], [22], [23], [24], [25].
Influence maximization is good for the scenarios of viral
marketing, because the active state of a node means product
adoption. But for topic promotion, the activity of a topic also
depends on the interactions among active nodes, which are
exactly where activity maximization differs from influence
maximization.

Under the IC model and the LT model, Kempe et al. [1]
proved that influence maximization is NP-hard. Moreover,
Chen et al. [4], [5] proved that computing influence spread
is #P-hard. Thus, many heuristic algorithms were proposed
to solve the problem under these two models [4], [5], [26],
[27], [28], [29]. Recently, a polling based method [11] was
proposed for influence maximization. Unlike the previ-
ous heuristic algorithms, this method can provide a solu-
tion with provable approximation guarantee. Later, Tang
et al. [12], [13] reduced the sample complexity and improved
the efficiency. Nguyen et al. [17] further sped up the algorith-
m with a different bounding technique [15]. In this paper,
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TABLE 2
The statistics of the data sets.

Network # Vertices # Edges Average degree
Douban 45,559 293,377 6.4
Aminer 1,712,433 4,258,615 2.5
DBLP 317,080 1,049,866 3.3
LiveJournal 3,997,962 34,681,189 8.7

we extend this algorithmic framework to solve our activity
maximization problem in a non-trivial way.

Although influence maximization has its root in viral
marketing, it may still be impractical under many real-
life scenarios. To fill this gap, a series of extensions to the
influence maximization problem were studied. For example,
Goyal et al. [30] proposed a data based approach to influence
maximization based on a credit distribution model. Instead
of maximizing the influence spread under some propagation
models with respect to some learned parameters, they tried
to find influential nodes from the action log data directly.
Chen et al. [31] considered the time-delay aspect of in-
fluence diffusion and studied the influence maximization
with time-critical constraint. Similarly, the spatial factor of
influence diffusion is considered and influence maximiza-
tion on Euclidean space has been studied as well [32], [33],
[34]. Tang et al. [35] studied the problem of maximizing
the influence spread and the diversity of the influenced
crowd simultaneously. Bhagat et al. [36] argued that product
adoption should be distinguished from influence spread in
viral marketing, as influence spread is essentially used as
“proxy” for product adoption. Wang et al. [37] distinguished
the information coverage and information propagation, and
proposed a new optimization objective that includes the
values of the informed nodes. All these extensions were
from the perspective of nodes and tried to exploit the values
of nodes as separate individuals in different diffusion mod-
els and different problem settings. They did not consider
activity strengths on edges in their objectives. In contrast,
our problem captures the interactions among nodes and
enables different (often orthogonal) applications of informa-
tion diffusion.

7 EXPERIMENTS

In this section, we evaluate our algorithm via a series of
experiments on four real-world data sets.

7.1 Settings

We ran our experiments on four real-world data sets, which
include Douban [38], AMiner [39], DBLP [40] and Live-
Journal [40]. The last two data sets are available at the
SNAP website (http://snap.stanford.edu). Table 2 shows
the statistics of the data sets.

The Douban data set is a social network about movie
ratings. We use the number of shared movies between a
pair of users as their activity strength, which reflects the
common interest between users. The AMiner data set is an
academic social network. We use the number of co-authored
papers between a pair of users as their activity strength,
which reflects the collaboration strength between users. To
explore the possibility of other kind of activity strengths,

we also verify our algorithm using two synthetic activity
settings on the DBLP data set and the Livejournal data set. In
the first case, we uniformly set Au,v to 1 for each edge (u, v).
In the second case, we set Au,v to the value of the diffusion
parameter Bu,v. The intuition is that there may be more
interactions between u and v if u is more likely to activate v.
The propagation probability Bu,v for the IC model and the
influence weight for the LT model of an edge (u, v) is set to

1
degree(v) , as widely used in literature [2]. For the parameters

controling approximation quality, we set ǫ = 0.1, δ = 0.001
and γ = 0.05 for all data sets.

We compare the proposed algorithm, referred as Sand-
wich, with three heuristic algorithms: InfMax, Degree and
PageRank. InfMax returns the nodes for influence maxi-
mization. We followed the implementation reported in [17].
Degree returns the nodes with high degrees. PageRank
returns the nodes with high PageRank [41] scores.

We implemented our algorithm and the baselines in Java.
All experiments were conducted on a PC with a 3.4GHZ
Intel Core i7-3770 processor and 32 GB memory, running
Microsoft Windows 7.

7.2 Effectiveness

Figure 5 shows the activity computed by each algorithm
on the four data sets, respectively. For better illustration,
we report the comparative gain ratio instead of the absolute
activity value, since the activity value scales vary greatly
with respect to seed set size. It is easier to distinguish the
gaps between the baselines and our algorithm when we use
comparative gain ratio as the metric, since it is not affected
by activity value scales. The comparative gain ratio of an

algorithm A is defined as δA(SA)−δA(S)
δA(S) , where SA and S

are the seed sets returned by algorithm A and the Sandwich
algorithm, respectively.

In the cases of real activity settings, our algorithm Sand-
wich always has the best performance. Only in very few cas-
es of synthetic activity settings, Sandwich is outperformed
marginally. In the real activity settings, InfMax has a poor
performance and almost in all cases is the poorest one.
This is because influence maximization only considers the
number of active nodes and ignores the network structure.
This phenomenon also demonstrates what we have pointed
out in Section 1: more active users do not necessarily lead to
more interaction activities.

In the uniform settings, algorithm Degree performs well
under the IC model but has a relatively bad performance
under the LT model. InfMax and PageRank often have a bad
performance under both the IC model and the LT model
in the uniform settings. In the diffusion settings, InfMax
algorithm is a good heuristic under both the IC model and
the LT model. Algorithm PageRank performs well on the
DBLP data set but has a bad performance on the other two
data sets. Algorithm Degree often has a bad performance
under both the IC model and the LT model in the diffusion
settings. These results show that these baseline algorithms
are not stable in performance in this task and can only work
well in some specific data set or activity setting. The reason
is that these baseline algorithms only use the properties of
the social network or the diffusion process but totally ignore
the activity strengths on edges. In contrast, our algorithm
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Fig. 5. Information activity on four data sets. (a)-(d) show the performances on two real data sets (Douban and Aminer) under IC and LT models.
(e)-(l) show the performances on real data sets (DBLP and LiveJournal) with two types of synthetic activity settings, such as uniform and diffusion.

utilizes the unbiased estimate of the activity and its lower
and upper bounds to solve the problem. This is why our
algorithm always has a good performance while the baseline
algorithms fail in many cases.

7.3 Approximation Quality

A major advantage of our algorithm is that it carries a
data dependent approximation ratio. Since the exact ap-
proximation is intractable to compute, we report the com-
putable lower bound of the approximation ratio, that is
(1−γ)2

(1+γ)2 · (1 − e − ǫ) · δ̂A(SU )

δ̂U (SU )
. Figure 6 shows the results on

the four data sets.
The ratio varies in different data sets. On the same data

set, the ratios under the IC model and the LT model also d-
iffer. In general, the ratio under the LT model is greater than
the one under the IC model in the same activity settings.
The ratio does not change much with respect to the size of
the seed set k. Roughly the ratio increases when k increases.
A possible reason is that the gap between the activity and
the upper bound shrinks when k increases, since there are
more nodes activated with a larger value of k. Interestingly,
we observe that, in terms of approximation ratio, the LT
model consistently outperforms the IC model on both the
real data sets (i.e., Douban and Aminer in Figures 6(a)-
(b)) and the data sets with synthetic activities (i.e., DBLP
and LiveJournal in Figures 6(c)-(d)). The consistency in the
experimental results indicates that the uniform setting and

diffusion setting of synthetic activities are two possible ways
to simulate real activities.

7.4 Scalability

Since the activity settings do not affect the running time, we
only report the running time in the uniform case. Figure 7
shows the running time on the four data sets.

In most of the cases, the running time of our algorithm
decreases when the size of seed set k increases. This is be-
cause the time cost in Sandwich depends on the number of
sampled hyperedges. According to Lemma 1, the expected
number of samples is inversely proportional to µZ , which is
the probability of the event S∩RgT (u) 6= ∅∧S∩RgT (v) 6= ∅.
It increases when k increases. A similar analysis holds for
the lower bound and the upper bound. PageRank is faster
than our algorithm on the smallest data sets but slower on
the largest data set. Degree and InfMax are more efficient
than our algorithm, but they are substantially weaker than
ours in effectiveness in many cases. As described in the
previous sections, there are many differences between our
algorithm and InfMax, which lead to different time costs
of the two algorithms. First, to obtain a data dependen-
t approximation factor, the Sandwich algorithm actually
solves three problems with polling based method. Second,
during the sampling process of the original problem and
maximizing the lower bound, we need to conduct a poll
from both two endpoints of a randomly picked edge. Third,
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Fig. 6. The performance of approximation ratio on four data sets. (a)-(b) show the performances on Douban and Aminer under IC model and LT
model. (c)-(d) show the performances on DBLP and LiveJournal with two types of synthetic activity settings, such as uniform (U) and diffusion (D).
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Fig. 7. The running time of all methods on four data sets under IC model
and LT model. We only report the running time under the uniform activity
setting, because the activity settings do not affect the running time.

the sampling objects of the two algorithms are different, i.e.,
nodes versus edges. The sampling complexity of InfMax
is mainly dependent on the number of nodes while the
sampling complexity of Sandwich is mainly dependent on
the number of edges. It is worthy noting that our algorithm
is actually very efficient. The largest running time is only
about 600 seconds on the largest data set, which has millions
of nodes and tens of millions of edges.

TABLE 3
The sampled LiveJournal Data sets

Sample ID 1 2 3 4 5
Vertices (×10

5) 1.0 5.0 9.0 13 20
Edges (×10

6) 1.6 5.8 9.7 13 18

To further explore the scalability of the algorithms, we
sample five data sets from the LiveJournal data sets as
follows. First, we start a breadth first search (BFS) from a
randomly selected node on the whole graph G until the
desired number of nodes are visited. Denote by N the set of
all nodes visited by the BFS. We use N to induce a subgraph
GN as the sampled data set. The number of nodes and edges
of the five subgraphs are listed in Table 3. After we obtain
the sample data sets, we run the algorithms when the size
of seed set is set to 200. The results are shown in Figure 8.
For both the IC model and the LT model, the Sandwich
algorithm scales up roughly linearly with respect to the
number of edges. Also, the slope in the IC model is greater
than that in the LT model. In other words, the time cost
increases more rapidly in the IC model. A possible reason
is that the influence in the IC model is more sensitive to the
number of edges in the graph, since each edge is activated
independently in the IC model.
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Fig. 8. The run running time of all methods on five sampled data sets

7.5 Influence Spread versus Activity

To explore the relation between influence spread and ac-
tivity strength, we report their values on the DBLP data
set and the LiveJournal data set with the uniform settings.
We choose the uniform settings for these experiments here
because, in such a situation, the total nactivity strength is
exactly the number of edges between the active nodes. In
this case, the activities can reflect the effect of the network
structure formed by the propagation induced subgraph. In
the the other two data sets, there is no such correspondence.
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Fig. 9. The interaction ratio performances of IC model and LT model on
DBLP and LiveJournal data sets under uniform activity setting.

We also calculate the ratio, which is the influence spread
against the information activity. Table 4 shows the results
on the two data sets.

The ratio differs under different models. In general, the
ratio under the LT model is greater than the one under the
IC model. Possibly active nodes are more closely connected
to each other under the LT model. We also notice that the
ratio is similar when k = 20 and k = 200. This result
suggests that the relation between the influence spread and
the activity does not vary much with respect to the size of
seed set. The reason is that more seed nodes lead to more
active nodes, but, at the same time, the activity also depends
on the network structure among these nodes.

The ratio can be viewed as the average degree of the
propagation induced subgraph. The average degree of the
propagation induced subgraph is smaller than the average
degree of the whole graph. This is because only a small
proportion of the nodes can be activated. Thus, there are
many edges between active nodes and inactive nodes. The
average degree of the propagation induced subgraph only
considers the edges between active nodes. Thus, we report
the interaction ratio of the active nodes, which is the num-
ber of edges whose both endpoints are active against the
number of edges that have at least one active endpoint.
The results are shown in Figure 9. The interaction ratios
are not high on the two data sets. This indicates that only a
small proportion of the neighbors are activated and interact
with the active nodes. This result demonstrates an essen-
tial difference between activity maximization and influence
maximization.

8 CONCLUSIONS

In this paper, to address the demand raised in several in-
teresting applications, we proposed and formulated a novel
problem, activity maximization. We proved the hardness of
the problem under both the IC model and the LT model. We
also developed a lower bound and an upper bound of the
objective function, and observed several useful properties
of the lower bound and the upper bound. We designed a
polling based algorithm to solve the problem that carries
a data dependent approximation ratio. Our experimental
results on four real data sets verified the effectiveness and
efficiency of our method. As future work we are interested
in learning the activity of user pairs from real-world data.
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