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Abstract—Due to the prevalence of “We-Media”, everybody
quickly publishes and receives information in various forms
anywhere and anytime through the Internet. The rich cross-
media information carried by the multi-modal data in multiple
media has a wide audience, deeply reflects the social realities and
brings about much greater social impact than any single media
information. Therefore, automatically detecting topics from cross-
media is of great benefit for the organizations (i.e., advertising
agencies, governments) that care about the social opinions. How-
ever, cross-media topic detection is challenging from following
aspects: 1) the multi-modal data from different media often
involve distinct characteristics; 2) topics are presented in an
arbitrary manner among the noisy web data. In this paper,
we propose a multi-modality fusion framework and a topic
recovery approach to effectively detect topics from cross-media
data. The multi-modality fusion framework flexibly incorporates
the heterogeneous multi-modal data into a Multi-Modality Graph
(MMG), which takes full advantage from the rich cross-media
information to effectively detect topic candidates. The topic
recovery (TR) approach solidly improves the entirety and purity
of detected topics by: 1) merging the topic candidates that are
highly relevant themes of the same real topic; 2) filtering out the
less-relevant noise data in the merged topic candidates. Extensive
experiments on both single-media and cross-media data sets
demonstrate the promising flexibility and effectiveness of our
method in detecting topics from cross media.

Index Terms—We-media, topic detection, cross-media, multi-
modality, fusion, topic recovery

I. INTRODUCTION

THE rapid promotion of Web2.0 technology facilitates
massive mutual interaction between real-world individu-

als and web contents, pushing our everyday life into the bright
new era of “We-Media”. One remarkable characteristic of
“We-Media” is that web contents are no-longer static; instead,
they interact with many real-world individuals, who frequently
create diversified web contents. Individuals concerned on the
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Fig. 1. Topics naturally exist in the multi-modal data from different media,
such as news website (CNN), video sharing website (Youtube) and micro-blog
(Twitter). The most common data modalities consist of text, image and video,
where the dominant data modality of different media varies a lot.

same real-world event tend to create web data with similar
contents. As more and more such data are created, they would
gradually embody the opinions of the individuals, thus a topic
with focused theme naturally emerges on the Web. These
topics provide reliable insights into the public opinions, which
are highly valuable to commercial companies, governments
and any organization that cares about the focuses of the entire
society. Therefore, effectively detecting the topics has become
a novel, beneficial and urgent problem in the era of “We-
Media”.

“We-Media” refers to “we are media”, which indicates that
every single citizen can be a journalist to create multimedia
data on the Web [1]. Different citizen-journalists have varied
favorite media in collecting, reporting, analyzing and dissemi-
nating news and information. For example, Tweeter fans prefer
tweeting news with short text and casually taken pictures;
Youtube masters share news by short videos and roughly
edited films; professional journalists often publish uniform
news articles with long text and carefully selected images.
As a result, huge amount of information is delivered by the
multi-modal data from diversified types of media, making most
topics simultaneously exist in multiple media (see Fig. 1).
Compared with the limited intrinsic information capacity of
a single media, the complementary cross-media information
delivered by multiple media is much richer, has a broader au-
dience group and reflects real-world events from more aspects.
Therefore, it is rational and beneficial to comprehensively
detect topics with the multi-modal data from multiple media,
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Fig. 2. The complex multi-modal data from different media (i.e., news articles, web videos and micro-blog posts) vary significantly in data structure,
data modality, information capacity and noise level. Such diversification of data properties is a big challenge to comprehensively utilize the complementary
cross-media information for accurate topic detection.

which is exactly the objective of cross-media topic detection.
A common solution for cross-media topic detection is to

detect dense clusters of the multi-modal data with high intra
cluster similarity [2]–[6]. Such dense clusters are most likely
to be topic candidates, since the data of the same topic
always contain similar contents [2]–[4], [6]. However, the
effectiveness and robustness of cross-media topic detection
are greatly challenged by the data complexity and the topic
diversity as follow:

• Data complexity: The complexity of multi-modal data
mainly attributes to the significantly varied data charac-
teristics, such as information capacity, noise level, data
modality and data structure (illustrated in Fig. 2). As
a result, the rich cross-media information is difficult to
be comprehensively utilized, since the data of different
modalities are incomparable and most multi-modal data
from multiple media are poorly structured [7].

• Topic diversity: Most topics consist of dense clusters
of multi-modal data with high intra cluster similarity,
however, the granularity, theme distribution and noise
level of different topics (i.e., dense clusters) diversify a
lot (illustrated in Fig. 3). Such significant topic diversity
makes accurate topic detection a very difficult problem,
since most traditional clustering approaches [8]–[10],
such as k-means [8] and spectral clustering [10], cannot
effectively detect the unknown number of diversified
dense clusters from highly noisy multi-modal data.

In this paper, we propose an effective cross-media topic de-
tection method to achieve impressive detection performance on
two widely used data sets. The challenges of data complexity

Fig. 3. Typical illustration of topic diversity, where Topic 1 differs a lot
from Topic 2 in granularity and data distribution. The x-axes in (a) and (b)
show the creation time of cross-modal data. (a) shows the data distribution
and (b) shows the intra cluster similarities of the dense clusters (i.e., topic
candidates).

and topic diversity are effectively dealt with by the following
techniques:

• To tackle the data complexity problem, a flexible multi-
modality graph fusion framework is carefully designed to
fuse the complex multi-modal data from different media
into a multi-modality graph (MMG), where the multi-
modal data of the same topic naturally form one or more
dense clusters. Each graph node of MMG represents
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a data and the edge weight is measured by the time-
embedded Jaccard similarity [11]. Due to the additivity
of the Jaccard similarity, MMG is extremely flexible to
incorporate different modalities by simply adding the cor-
responding single modality graphs together. As a result,
MMG effectively leverages the complementary cross-
media information to achieve significant improvement of
topic detection performance. For systematic simplicity,
we mainly focus on fusing the most common data modal-
ities of text and video, which cover most of the effective
multi-modal data on the Web.

• To tackle the topic diversity problem, a time-decay co-
efficient and a topic recovery approach are proposed
to effectively deal with the diversified granularity and
complex theme distribution of real topics. The time decay
coefficient models the influence of time on the topic-
similarity between multi-modal data, which makes the da-
ta from different topics more distinguishable according to
their disparate time stamps. Besides, the soft quantization
of time coefficient largely maintains the continuity of the
time attribute, which enables our method to effectively
detect topics with various granularities and prevents the
unexpected segmentation of real topics caused by hard
splitting the timeline [2], [3]. The topic recovery (TR)
approach first joints the relevant topic candidates that are
generated by multiple themes of the same real topic, then
effectively filters out the noise data by their relevance
with the jointed topic. This strengthens the performance
of our method in detecting topics with complex theme
distributions and high noise level.

II. RELATED WORK

The Topic Detection and Tracking (TDT) task [5], [6], [12]–
[19] originates from the DARPA sponsored research program
[20], which aims to automatically detect and organize topics
from traditional text media. However, under the impetus of the
“We-Media” era, the major media form has changed from the
single-modal text data to the more informative multi-modal
data. This produces the need for cross-media topic detection,
which comprehensively utilizes the rich multi-modal data for
better topic detection performance.

A. Multi-modality Fusion

The key idea of multi-modality fusion is to effectively
leverage the rich multi-modal data by robustly fusing them
together. The effectiveness of multi-modality fusion has been
extensively demonstrated in various tasks [21]–[23], such as
topic detection [2]–[4], [7], [21], [23], [24], multimedia event
detection [25]–[27], video story summarization [28]–[30], and
video annotation [31].

In the topic detection task, Shao et al. [7] proposed a Star-
structured K-partite Graph (SKG) to integrate multi-modality
features for web video topic detection. However, SKG requires
every data to have the same number and same type of features,
which limits their generation capacity to fully use the rich
non-uniform cross-media data on the Web. Cao et al. [2]
introduced a salient trajectory method to build the tag and

visual information into a topic evolution link graph for topic
detection. Chen et al. [3] fused the dense bursty tag groups
with near duplicate keyframes to detect web video topics.
However, both Cao’s and Chen’s methods strongly rely on
video tags; this limits their effectiveness in fully leveraging
the rich information from various text data on the Web, such
as news articles, micro blogs and user comments. Zhang et
al. [4] proposed the Multi-Modality Graph (MMG), which
effectively fuses the multi-modal information in various data
forms and is able to detect topics in both single and multiple
media by finding the dense subgraphs of MMG. However,
MMG’s performance is limited in detecting the complex real
topics with multiple topic themes and high noise level, since
each theme of the same complex topic would be detected as
an individual topic with noise, which divides the complex real
topics apart and degenerates the topic detection performance.

In the other tasks, Lan et al. [26] proposed a double fusion
scheme to combine the former feature fusion with the latter
output fusion for multimedia event detection. Tong et al. [32]
proposed a graph-based semi-supervised learning algorithm to
fuse multi-modal data by both linear and sequential fusion
schemes, where the data from each modality is represented
as an independent graph. Wang et al. [31] extended Tongs
method [32] to the OMG-SSL approach that fuses multiple
graphs for video annotation and person identification. OMG-
SSL embeds different visual features and temporal information
into a set of single modality graphs, which are further fused
with the optimal fusion weights learned by a semi-supervised
learning algorithm. Fu et al. [30] proposed a multi-graph
fusion method for multi-view video summarization, where the
video shots and the corresponding spatial-temporal relations
are fused by a hyper graph. Zhang et al. [33] proposed a
graph-based query specific fusion approach for image retrieval,
where multiple results returned by different image retrieval
methods are fused and re-ranked to achieve better retrieval
performance. The fusion method of Zhang’s work [33] is
focused on image data, however, the advanced image retrieval
performance reveals the potential effectiveness of Jaccard
similarity in processing heterogeneous information. This also
provides us a fundamental tool to fuse the more complex cross-
media multi-modal data for topic detection. All these methods
are deeply customized for their own tasks; however, the key
idea of fusing multi-modal data by graphs inspires us a lot.

B. Topic Model

Probabilistic topic models are extensively used to discover
the underlying structure of data. Though the “latent topic”
in topic models is not exactly the same as the “real topic”
in the task of topic detection, they are potentially relevant
with each other from the perspective of semantic. As a result,
many researchers have successfully applied topic models to
detect topics from text data. Chou et al. [13] proposed the
Incremental Probabilistic Latent Semantic Indexing (IPLSI)
algorithm that captures the story line of events by maintaining
the continuity of the latent semantics. He et al. [5] incorporated
time information into a temporal Discriminative Probabilistic
Model (DPM) to strengthen the topic detection performance.
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Pan et al. [16] combined the Latent Dirichlet Allocation (LDA)
[34] model with the temporal and spatial clustering for topic
detection. They also extended the Spatial Latent Dirichlet
Allocation [35] method to detect topics from news document
collections. AlSumait et al. proposed an Online-LDA method
to dynamically extract the thematic patterns from text streams
for the identification and tracking of emerging topics. All these
works focus on detecting topics from the single modal text
data, where the rich information from other modalities are
not used. However, their achievements in text-oriented topic
detection have demonstrated the effectiveness of topic models
in processing text data. These inspires us to use the Latent
Dirichlet Allocation (LDA) [34] for text feature extraction.

Besides, topic models are widely used in other multimedia
applications as well. Wang et al. [36] extended the supervised
Latent Dirichlet Allocation (sLDA) to a multi-class sLDA for
image classification and annotation, where the relationship
between the image class labels and the image annotations is
discovered by a predictive latent space. Fu et al. [37] proposed
a multi-modal latent attribute topic model to describe user-
defined and latent attributes in a semi-latent attribute space;
they also proposed a scalable probabilistic topic model to learn
semi-latent attributes from sparse and incomplete labels.

C. Near Duplicate Keyframe

Near duplicate keyframes (NDK) are defined as keyframes
that are similar with each other in spite of the variations
of viewpoint, motion, lighting and acquisition time [28].
According to the studies of Wu et al. [38] on video sharing
web sites, the top ranked results retrieved by the same topic
always contain many near duplicate videos. Xie et al. [39] also
claimed that more than 50% of the news videos about the same
real-world event contain frequently remixed and reposted near
duplicate contents. The primary cause of such phenomenons is
that the videos about the same topic always use near duplicate
shots to convey similar information about the same real world
events. Therefore, typical near duplicate video contents, such
as keyframes and shots, are effective visual features to evaluate
the similarity between web videos.

Many excellent works [38], [40]–[43] have been proposed
to effectively detect near duplicate keyframe (NDK), which
is widely used in the task of topic detection [3], [7], [23],
[29], [44]. Hsu et al. [44]utilized NDK and other multi-
modal features to track known topics across broadcasting
news videos. Shao et al. [7] integrated NDK with other
multi-modality features by a Star-structured K-partite Graph
(SKG) to improve the topic detection performance. Wu et
al. [23] presented a weighted bipartite graph to discover topic-
related stories, where pairs of NDK are used as visual feature
nodes to serve as visual constraints. T. Chen et al. [3] fused
the dense bursty tag groups with NDK to efficiently detect
topics from web videos. Wang et al. [29] introduced a event
driven web video summarization approach, which localizes
surrouding tags into associated video shots and identify a set
of keyshots by near-duplicate keyframe detection. All these
works have well demonstrated the effectiveness of NDK in
topic detection, thus NDK is also adopted as a basic visual

feature to measure the similarity between videos in our topic
detection framework.

D. Time Attribute

Time is a natural attribute of most topics and how to
effectively make use of the time attribute is an open problem
widely studied by many researchers. He et al. [5] incorporated
time information into a temporal Discriminative Probabilistic
Model (DPM) to detect topics from text documents. DPM
represents each document by discriminative words with time
stamp and computes the posterior probability of topics when
the corresponding document and time stamp are given. Cao et
al. [2] and Chen et al. [3] split the time line into fragments
and joint the related fragments by the temporal consistency
of topics. However, hard splitting the originally continuous
time line inevitably divides many topics apart, which limits
the robustness of the topic detection system and degenerates
the detection quality of the topics with long life time.

The time attribute is also important for many other tasks
that process sequential data with temporal consistency. Wang
et al. [31] utilized the temporal consistency of video data
to improve the video annotation performance by exploring
temporal consistency in a temporal-graph. Fu et al. [30]
used the temporal consistency of videos for multi-view video
summarization, which calculates the temporal similarity of
video shots according to the time stamp of the corresponding
keyframes. Speakman et al. [45] developed a dynamic pattern
detection method, which allows the detected pattern of nodes
to change with the incorporation of temporal consistency con-
straints. The achievements of these works further demonstrate
the effectiveness of time attribute in the corresponding tasks.

In our topic detection framework, we propose a time decay
coefficient to model the continuous influence of the time
attribute on evolving topics and smoothly fuse such temporal
information into the carefully designed multi-modality graph
(MMG). This enables us to control the granularity of topics
to detect and strengthens the topic detection performance by
maintaining the continuity of the time attribute.

III. PROPOSED APPROACH

In this section, we introduce the cross-media topic detection
framework (Fig. 4) based on multi-modality graph (MMG),
which effectively utilizes the complementary multi-modal in-
formation by merging single modality graphs constructed from
different modalities. MMG also smoothly embeds the time
information into the edge weights with a carefully designed
time decay coefficient. Without loss of generation, we mainly
focus on the major modalities of text (denoted by T) and video
(denoted by V), which are the most typical modalities widely
used by many topic detection methods [2], [3], [7], [28]. A
multi-modal data is denoted by di = (dTi ; d

V
i ), where dTi and

dVi represent the text and video modalities of the i-th data di,
respectively. Since the data modalities involved by a certain
medium generally do not cover all potential modalities, there
are a large proportion of incomplete multi-modal data with
missing data modalities. For such incomplete data, either dTi
or dVi would be set as null.
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Fig. 4. The flowchart of the proposed Multi-modality graph fusion method for cross-media topic detection. In text graph and visual graph, the virtual nodes
plotted in dotted lines represent the missing data of the corresponding modality. The virtual edges plotted in dotted lines represents the virtual connection
of missing data. The multi-modality graph (MMG) is obtained by directly adding the single modality graphs together. The dense subgraphs of MMG are
regarded as topic candidates (T.C.), which are further recovered by the topic recovery (TR) approach to detect the real topics.

A. The Text Graph

LDA-based Text Feature. Cross-media text data refers to
the highly imbalanced text data from different media, which
vary significantly in text length, noise level, and information
capacity. For example, the professionally edited official news
articles generally have long text length, contain few noise,
and deliver rich information of a highly focused theme. On
the contrary, the user provided text data, such as web video
annotations, image tags and tweets, often consist of a few
sentences (or keywords) with high noise level and convey
limited information of relatively less focused theme.

Traditional text features, such as tf-idf histogram and key-
words group, are unreliable to comprehensively measure the
similarity between cross-media text data, since their descrip-
tive power changes dramatically with the text characteristics.
To describe such imbalanced text data more accurately and
robustly, we propose to extract text feature by the Latent
Dirichlet Allocation (LDA) [34], which is able to learn de-
scriptive and robust latent topics from noisy and non-uniform
text data on various media. LDA is a widely used topic model
in natural language processing. It assumes that each document
is a mixture of a number of topics and each word is generated
from one of the document’s topics. By modeling the proportion
of topics as a Dirichlet distribution, LDA represents each topic
as a multinomial distribution over words and infers the latent
topic distribution of a given document from the corresponding
distribution of word counts. Such latent topics are potentially
related with the real-world topics, therefore we employ LDA
to learn the latent topics from all the text data (e.g., news
articles and video surrounding texts) and use the latent topic
distribution as the topic-sensitive text feature. In this way, the
text data dTi from any media can be uniformly represented by
a L2 normalized distribution of the latent topics:

dTi = [pi1, pi2, · · · , pic, · · · , piC ] (1)

where pic is the normalized probability of dTi over the c-th
latent topic and C is the total number of latent topics for
LDA. The feature-level similarity between two text features

dTi and dTj is measured by the cosine similarity:

SimT
ij = cosine(dTi , d

T
j ) =

dTi · dTj
∥dTi ∥ · ∥dTj ∥

(2)

where ∥·∥ represents the L2-norm, dTi ·dTj is the inner product
between dTi and dTj .

The descriptive power of the latent topic distribution (i.e.,
dTi in Eqn. 1) is more balanced for different media than tradi-
tional text features, since the basic descriptive power of latent
topics is robust to the text length, noise level and information
capacity of single text data, and all cross-media text data are
treated equally when learning the latent topics with the LDA.
The latent topic distribution also gains a stronger descriptive
power in the scenario of cross-media topic detection, since
the latent topics learnt by the LDA are highly related to the
real-world topics from the perspective of semantic. Therefore,
using the normalized distribution of latent topics as text feature
is able to describe the real-world topics of text data more
accurately. The latent topics can also be learnt from the text
data of single media. However, comprehensively learning them
from cross-media text data is a natural text fusion process,
which further enhances their descriptive power by utilizing
the complementary cross-media information.

Text Graph Construction. The text graph GT =
({nT

i }, {wT
ij}) is the single modality graph constructed from

the text data, where nT
i represents the i-th graph node and

wT
ij is the edge weights between nT

i and nT
j . Each node nT

i

corresponds to the i-th text data (i.e., a text document) dTi ,
which is the textual part of multi-modal data di. The edge
weight wT

ij represents the fusion-level similarity between two
text documents dTi and dTj , which is evaluated by the Jaccard
similarity [11]:

wT
ij =

|NT
i (k) ∩NT

j (k)|
|NT

i (k) ∪NT
j (k)|

(3)

where NT
i (k) and NT

j (k) are the k-nearest neighbor sets of
text data dTi and dTj , respectively. | · | is the L0-norm that
evaluates the number of elements in the nearest neighbor sets.
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The multi-modal data without textual information are rep-
resented as a virtual node (Fig. 4) in the text graph and the
relative edge weights are set to zero. This makes the proposed
fusion framework more robust in handling the large proportion
of incomplete cross-modal data with missing text data.

B. The Visual Graph

Near Duplicate Keyframes. Near-duplicate keyframes
(NDK) has been widely used in large-scale news video topic
detection and tracking. In our work, we detect NDK in a
similar way as L. Xie et al. [39] and T. Chen et al. [3], which
consists of the following steps:

1) Segment each video into video shots according to the
difference of color histogram and extract the first frame
(FF), the middle frame (MF) and the last frame (LF)
for each shot. If the color histogram of MF is similar
with either one of FF or LF, we select the MF as the
keyframe. Otherwise, FF, MF and LF are all selected as
keyframes.

2) Index all keyframes by the FLANN method [46], where
the visual feature of color correlogram is adopted to
represent each keyframe.

3) Use each keyframe as a query to search the FLAN-
N index for the neighboring candidates, where the
neighboring keyframes within a certain L2 distance to
the query keyframe are selected as the near duplicate
keyframes (NDK).

Since the likelihood of two videos being about the same
topic is positively correlated with the number of near duplicate
keyframes between them, we directly measure the feature-
level similarity between two videos by their number of near
duplicate keyframes:

SimV
ij = # NDK between dVi and dVj (4)

where dVi and dVj are the video modality (i.e., video data) of
the multi-modal data di and dj , respectively.

Visual Graph Construction. The visual graph GV =
({nV

i }, {wV
ij}) is constructed in a similar way with the text

graph GT , where nV
i represents the i-th graph node and

wV
ij is the edge weight between nV

i and nV
j . Each node nV

i

corresponds to the i-th visual data (i.e., a web video) dVi ,
which is the visual part of the i-th multi-modal data di. The
edge weight wV

ij represents the fusion-level similarity between
two web videos dVi and dVj , which is evaluated by the Jaccard
similarity [11]:

wV
ij =

|NV
i (k) ∩NV

j (k)|
|NV

i (k) ∪NV
j (k)|

(5)

where NV
i (k) and NV

j (k) are the k-nearest neighbor sets of
web videos dVi and dVj , respectively. | · | is the L0-norm that
evaluates the number of elements in the nearest neighbor sets.

Each multi-modal data without visual information is repre-
sented as a virtual node (see Fig. 4) in the visual graph and
the relative edge weights are all set to zero. This makes the
proposed fusion framework more robust in dealing with the
large proportion of incomplete cross-modal data with missing
visual data.

C. The Multi-modality Graph

Time Decay Coefficient. The time decay coefficient is
proposed to smoothly measure the temporal similarity of two
data by the interval between their upload times. In this way,
the data from different topics can be more distinguishable
according to their disparate time stamps. Given two multi-
modal data di and dj , the time decay coefficient is obtained
by:

αij = e
−β

(
⌊
|ti−tj |

δ ⌋
)2

(6)

where β is a positive scale parameter to control the rate of
decay, δ is a small fixed unit time factor and ti, tj are the
upload times of di and dj . Note that, ⌊·⌋ denotes the round
down operation.

Apparently, when the time interval |ti − tj | increases, the
time-decay coefficient decreases exponentially, which further
indicates that di and dj are less likely to be about the same
topic. As a result, the time decay coefficient is able to properly
model the influence of time on evolving topics, where the
probability that two data are about the same topic drops expo-
nentially with their time interval. Meanwhile, the soft quanti-
zation strategy of the proposed time decay coefficient largely
maintains the continuity of the time attribute. This enables our
topic detection system to effectively detect topics with various
granularities and prevents the unexpected segmentation of real
topics caused by hard splitting the timeline [2], [3].

Multi-modality Graph Fusion. After obtaining the text
graph GT = ({nT

i }, {wT
ij}) and the visual graph GV =

({nV
i }, {wV

ij}), we fuse them into the Multi-Modality Graph
G = ({ni}, {wij}), where the node set is obtained by:

{ni} = {nT
i } ∪ {nV

i } (7)

and the edge weight wij is obtained by:

wij = αij(w
T
ij + wV

ij) (8)

In this way, the single-modality nodes nT
i and nV

i , which
correspond to the text and video modalities of the same multi-
modal data di, are fused into one Multi-Modality Graph (M-
MG) node ni. Other single-modality nodes, which correspond
to the incomplete data missing either text or visual modalities,
are directly transformed to MMG nodes without fusion. All
nodes in MMG are treated equally.

For the fusion of edge weights wT
ij and wV

ij , although
the feature-level similarity of text data is not directly com-
parable with the feature-level similarity of video data, the
corresponding fusion-level Jaccard similarities are comparable,
since both of them reflect the consistency of two k-nearest
neighborhood sets. Considering that there is no prior about
the relative importance of each modality, a proper solution
is to treat all modalities equally by simply summing up the
edge weights (see Eqn. 8). The time information is also
embedded into the fused edge weights of MMG to make the
graph nodes (i.e., multi-modal data) from different topics more
distinguishable according to their time stamps. Apparently,
this fusion framework of MMG is flexible enough to robustly
incorporate the multi-modal data in different media.
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D. Topic Candidate Detection and Topic Recovery

Topic Candidate Detection. The edge weights {wij} of the
Multi-Modality Graph (MMG) jointly evaluate both the upload
time similarities and the content similarities of multi-modal
data. Since data about the same theme of a topic are generally
similar with each other in both content and upload time, the
corresponding MMG nodes would be strongly connected with
each other and naturally form a dense subgraph. Such dense
subgraph is a topic-sensitive pattern, which is robust to noise
and can be be effectively detected by pair-wise clustering
methods. Therefore, we can transform the cross-media topic
detection problem into a dense subgraph detection problem on
MMG, where each dense subgraph of MMG is regarded as a
meaningful topic candidate.

The dense subgraph seeking problem is well studied in
previous literatures [47]–[50]. An arbitrary subgraph of MMG
is represented by a probabilistic cluster x ∈ △m, where
△m = {x | x ∈ Rm, x ≥ 0,

∑m
i=1 xi = 1} is the standard

simplex and m is the total number of graph nodes in MMG. In
fact, x is a unit indicator vector, which maps a cluster of graph
nodes to the standard simplex △m. The i-th component of x
is denoted by xi, which is the probability that the subgraph
x contains the MMG node ni. Therefore, the index set of all
the non-zero components of x (i.e., {i | xi > 0, i ∈ [1,m]})
identifies the set of all nodes contained by the subgraph x.
Particularly, xi = 0 means that ni is not contained by subgraph
x, and the subgraph containing a single node ni can be
represented by x = ei, where ei is the i-th column of the
identity matrix.

Let W be the affinity matrix that stores the edge weights
of MMG (i.e., W (i, j) = wij), then the average connection
strength between all nodes of subgraph x can be measured by:

g(x) = xTWx =

m∑
i=1

m∑
j=1

wijxixj (9)

According to Pavan et al. [48], each dense subgraph of
MMG uniquely corresponds to a local maximum point x∗ of
g(x), which identifies a topic candidate and can be easily ob-
tained by solving the standard quadratic optimization problem
(StQP) as follow:

x∗ = max
x

g(x), s.t. x ∈ △m (10)

There are many well designed mathematical tools to solve
the StQP problem in Eqn. 10, such as graph shift [47],
dominant set method [48], hierarchical dominant set method
[49] and infection-immunization dynamics [50]. We adopt the
graph shift method [47] for its advanced efficiency.

Topic Recovery. The quality of the topic candidates detect-
ed by seeking dense subgraphs on the Multi-Modality Graph
(MMG) are often challenged by the large proportion of real
topics with complex theme distribution and high noise level.
Such topics generally involve multiple themes, which are often
detected as multiple independent dense subgraphs (i.e., topic
candidates) by the graph shift method [47]. This divides many
real topics apart and lowers the integrity of the detected topics.
Besides, the confusing noise data also decreases the purity of
detected topics. As a result, we propose the topic recovery

Algorithm 1: The merging step of topic recovery
Input: The set of all detected topic candidates

X = {x∗}.
Output: The set of merged topic candidates Z = {z∗}.

1: Set Z = ∅.
2: repeat
3: Select the most significant topic x∗ ∈ X with the

maximum value of g(x∗) (see Eqn. 9).
4: Find all topic candidates Y = {y∗} ⊂ X satisfying

Rel(x∗, y∗) > θ (see Eqn. 11), where θ is the
integrity threshold.

5: Obtain the merged topic candidate z∗ by merging x∗

with all topic candidates in Y (see Eqn. 13).
6: Remove x∗ and Y from X and add z∗ into Z.
7: until X = ∅.
8: return Z = {z∗}

Algorithm 2: The filtering step of topic recovery
Input: A merged topic candidate z∗ ∈ Z.
Output: The multi-modal data set T of the final topic.

1: Set T = ∅.
2: repeat
3: Select di with the largest component z∗i of z∗.
4: Compute L = {dj | wij > η, dj ∈ T}, where η is the

purity threshold and wij ∈ W measures the relevance
level between multi-modal data di and dj .

5: if |L|/|T | ≥ 0.5 then
6: Add di into T and set z∗i to zero.
7: else
8: Break.
9: end if

10: until
∑m

i=1 z
∗
i = 0

11: return T

(TR) approach, which increases the integrity of topics by
merging the relevant topic candidates together and improves
the topic purity by filtering out the less relevant noise data.

The merging step of TR joints the relevant topic candidates
that corresponds to multiple themes of the same topic. The
rationality of this step lies in the fact that the relevance level
between most themes of the same topic are much higher
than the themes from different topics. Therefore, the topic
candidates that are actually the themes of the same real topic
can be effectively identified according to their high relevance
level. We propose to measure the relevance between two topic
candidates (i.e., dense subgraphs) x∗ and y∗ by:

Rel(x∗, y∗) = (x∗)TWy∗ =

m∑
i=1

m∑
j=1

wijx
∗
i y

∗
j (11)

which is the average connection strength between the graph
nodes (i.e., multi-modal data) of the corresponding dense
subgraphs (i.e., topic candidates) x∗ and y∗. If the relevance
level between x∗ and y∗ are higher than a fixed entirety
threshold θ (i.e., Rel(x∗, y∗) > θ), they are regarded as the
themes of the same real topic, hence they are merged together
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by the weighted average as follow:

z∗ =
x∗ · |x∗|+ y∗ · |y∗|

|x∗|+ |y∗|
. (12)

where | · | represents the L0-norm, |x∗| (|y∗|) represents the
number of graph nodes contained by the dense subgraph x∗

(|y∗|) and z∗ ∈ △m is the merged topic candidate. The
weighed average in Eqn. 12 can be easily extended to merge
x∗ with a set of relevant topic candidates Y = {y∗} by:

z∗ =
x∗ · |x∗|+

∑
i(Yi · |Yi|)

|x∗|+
∑

i |Yi|
(13)

where Yi represents the i-th topic candidate y∗ in Y .
Details about the merging step of topic recovery are summa-

rized in Algorithm 1, where all highly relevant topic candidates
in X = {x∗} are merged together to strengthen the integrity of
merged topic candidates in Z = {z∗}. Note that, each merged
topic candidate z∗ ∈ Z corresponds to a merged subgraph in
the multi-modality graph.

The filtering step of TR effectively filters out the noise data
that are less relevant with the merged topic candidate z∗ ∈
Z. Since the positive data are generally more relevant with
the merged topic candidate than the noise data, we can easily
filter out the noise data by their low relevance with the topic
candidate.

Given a merged topic candidate z∗ ∈ Z, Algorithm 2
iteratively grows the final topic T by selecting the multi-modal
data di, whose relevance level with more than 50% of the
multi-modal data in current T are larger than a fixed purity
threshold η. Note that, the relevance level between multi-
modal data di and dj is directly measured by the affinity value
wij ∈ A, which is also the edge weight between graph nodes
ni and nj in MMG.

IV. EXPERIMENT

To demonstrate the effectiveness of the proposed multi-
modality graph with topic recovery (MMG+TR), we compare
the topic detection performances with the salient trajectory
method (ST) [2], the tag group method (TG) [3] and the multi-
modality graph (MMG) [4] without topic recovery. For both
MMG and MMG+TR, the NDKs are extracted by the method
proposed in [39] and the latent topics are generated by the
“topic modeling toolbox” published by L. Thomas et al. [51].
All experiments are conducted on a common PC with Core
i-5 CPU and 12 GB memory.

A. Data Sets and Evaluation Criteria

Data Sets. The topic detection performances of compared
methods are analyzed on two standard data sets: the core data
set of MCG-WEBV [52] and YKS [4]. The core data set of
MCG-WEBV is published by J. Cao et al. [52] in 2009. It
is a widely used single-media data set for web video topic
detection [2]–[4], [7]. The data set is built with every day’s
most viewed videos and their surrounding texts (e.g. titles,
tags, descriptions) on “www.youtube.com” from December
2008 to February 2009. It contains 3,660 web videos and
73 manually annotated ground truth topics, and the average

topic-duration is 42.2 days. For notational compactness, we
refer to the “core data set of MCG-WEBV” as MCG-WEBV
throughout the paper. The YKS data set is a cross-media data
set for topic detection published by Y. Zhang et al. [4] in 2013.
YKS contains 2,131 web videos from “www.youku.com”
(YouKu) and 7,325 news articles from “www.sina.com.cn”
(Sina). All the data of YKS are crawled from May 2012
to June 2012. The ground truth contains 20 pure web video
topics, 225 pure news article topics and 73 hybrid topics,
which involve both the two media of web video sharing site
(i.e., YouKu) and official news website (i.e., Sina). The average
topic-duration is 13.0 days.

Fig. 5. An illustration of ET, ED and EC. Each multi-modal data is
represented as a node. ED is the data set of a detected topic, which is marked
by the blue dashed ellipse. ET is the data set of ground truth topic (in the
green ellipse) that matches the best with the detected topic ED. EC is the set
of correctly detected data (in the red dashed circle), which is the intersection
of ED and ET.

Evaluation Criteria. We adopt the same evaluation method
with J. Cao et al. [2] and T. Chen et al. [3], where the standard
evaluation criteria, such as precision, recall and F-Measure, are
used to evaluate the topic detection performance. The precision
and recall are defined as:

Precision =
|EC|
|ED|

Recall =
|EC|
|ET |

(14)

where |ED| is the number of multi-modal data in the detected
topic, |ET | is the number of data in the ground truth topic
best matched with the detected topic, and |EC| is the number
of correctly detected data (see Fig. 5). After obtaining the
precision and recall for each topic, we calculate the F-Measure
by:

F =
2 · Precision ·Recall

Precision+Recall
(15)

which is a comprehensive evaluation on both precision and
recall.

Similar with Cao et al. [2], we sort all detected topics
by their F-measure performance and evaluate the overall
performance of a topic detection approach by the average of
precision, recall and F-measure on the top-N detected topics
(N = [10, 20, 30]). Specifically, the average precision, recall
and F-measure performances for the Top-N detected topics
are denoted as “P@N”, “R@N” and “F@N”, respectively.
Additionally, we also adopt the CP measurement proposed
by T. Chen et al. [3] to evaluate the percentage of correctly
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Data set: MCG−WEBV
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Data set: MCG−WEBV

F@20:MMG+TR (β=0.01)
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(b) MCG-WEBV (F@20)
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Data set: MCG−WEBV
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(c) MCG-WEBV (F@30)
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Data set: YKS

F@10:MMG+TR (β=1.0)
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(d) YKS (F@10)

50 100 150 200 250 300 350 400 450
0.7

0.75

0.8

0.85

0.9

0.95

1

C

F
−

M
ea

su
re

The influence of C on Average F−measure (F@20)

 

 

Data set: YKS

F@20:MMG+TR (β=1.0)

F@20:MMG (β=1.0)
F@20:MMG (β=0.1)

(e) YKS (F@20)
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Data set: YKS
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(f) YKS (F@30)

Fig. 6. The topic detection performances of MMG and MMG+TR on two standard data sets of MCG-WEBV and YKS. The TR parameters are set as
[θ = 0.65, η = 0.5] for MCG-WEBV and [θ = 0.45, η = 0.6] for YKS. (a)∼(c) show the average F-measure performances of F@10, F@20 and F@30 on
MCG-WEBV, respectively. (d)∼(f) show the average F-measure performances of F@10, F@20 and F@30 on YKS, respectively.

detected topics. CP is defined as:

CP =
NCDT

NDT
=

# Correctly Detected Topics

# Detected Topics
(16)

where NDT is the total number of detected topics, and NCDT
is the number of correctly detected topics. A detected topic is
regarded as correct if its F-Measure is bigger than 0.5.

B. Parameter Analysis

In this section, we analyze how each parameter affects the
topic detection performances of both MMG and MMG+TR.
The number of nearest neighbors k (see Eqn. 3 and Eqn. 5)
and the unit time factor δ (see Eqn. 6) do not have much
influences on the final result, thus they are fixed as k = 30,
δ = 3 for both MMG and MMG+TR. All experimental results
are obtained with optimal parameter settings by default.

The number of latent topics C. The latent topics are learnt
by the Topic Modeling Toolbox published by L. Griffiths et
al. [51] with default settings, where the number of iterations is
set to 1000. For each data set, we use all the documents of the
text collections to learn the latent topics of LDA. Specifically,
for the MCG-WEBV data set, we use the surrounding texts of
all 3,660 videos to learn the latent topics; for the YKS data
set, we use the surrounding texts of all 2,131 videos and the
7,325 news documents. The average document sizes of MCG-
WEBV and YKS are 33 and 429, respectively.

The number of latent topics C decides the descriptive power
of the text feature (Eqn. 1), which affects the edge weights of
the multi-modality graph and influences the topic detection
performances of both MMG and MMG+TR. Fig. 6 shows
the influence of C on the average F-Measure of MMG and

MMG+TR. On both MCG-WEBV and YKS, the F-measure
performances (i.e., F@10,F@20 and F@30) first increase with
the growth of C due to the increasing descriptive power of
the text feature. However, due to the intrinsic descriptive
power bottleneck of the latent topics, the descriptive power of
text feature cannot increase infinitely with the growth of C.
Therefore, the F-measure performances stabilize at an optimal
level when C becomes large. Besides, we can also see from
Fig. 6 that MMG+TR generally outperforms MMG on both
data sets, which demonstrates the effectiveness of the topic
recovery approach. According to the experimental results, the
optimal value of C for both MMG and MMG+TR are set
as C = 300 and C = 350 for MCG-WEBV and YKS,
respectively.

The scale parameter β for time decay coefficient. The
scale parameter β controls the decay rate of the time decay
coefficient (Eqn. 6). This parameter is designed to control
the interested granularity of the topics to be detected. A
small β strengthens the edge weights between MMG nodes,
which increases the chance of the positive nodes from large
granularity topics to form a dense subgraph. On the contrary,
a big β weakens the MMG edge weights, which favors
the detection performances of small granularity topics. This
phenomenon is shown in Fig. 7, where the average granularity
(i.e., topic duration) of top-20 detected topics decreases with
the growth of β on both MCG-WEBV and YKS.

Different values of β focus MMG+TR on detecting the top-
ics with different ranges of granularity. From this perspective,
each value of β is optimal for its own focused range of topic
granularity. However, from the perspective of overall topic
detection performance, there is a trade-off between the topics
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Data set: YKS

MMG+TR
MMG

(b) YKS

Fig. 7. The influence of β on the duration of topics detected by MMG and
MMG+TR. (a) shows the results on MCG-WEBV. (b) shows the results on
YKS. The x-axis is plotted in log scale. Since the proposed topic recovery
(TR) approach merges multiple topic candidates together, the average duration
of the topics detected by MMG+TR is relatively larger than MMG.

TABLE I
THE INFLUENCE OF β ON THE F@10 PERFORMANCES OF MMG AND

MMG+TR. FOR MCG-WEBV: [C = 300, θ = 0.65, η = 0.5]. FOR YKS:
[C = 350, θ = 0.45, η = 0.6].

β
YKS MCG-WEBV

MMG MMG+TR MMG MMG+TR
0.001 0.9046 0.9265 0.9302 0.9508
0.01 0.9258 0.9373 0.9398 0.9675
0.1 0.9497 0.9766 0.9165 0.9294
1.0 0.9511 0.9808 0.8179 0.8434

with large and small granularity. Table I shows the influence
of β on F@10 of MMG and MMG+TR on MCG-WEBV and
YKS. For both MMG and MMG+TR, the optimal value of β
are set as β = 0.01 and β = 1.0 on MCG-WEBV and YKS,
respectively. Besides, we can also see that the optimal value of
β on MCG-WEBV is smaller than the optimal β on YKS. This
is because that the average topic granularity of MCG-WEBV
is larger than YKS, which requires a relatively smaller β to
focus on detecting the topics with large granularity.

The integrity parameter θ. The integrity parameter θ is the
linkage threshold between two highly relevant topic candidates
detected by MMG. Since MMG may divide different themes
of a complex real topic as multiple topic candidates, linking
such topic candidates increases the integrity of the detected
topics, which improves the topic detection performance. On
the other hand, the less relevant topic candidates from differ-
ent real topics are not linked together, since their relevance
level is generally much lower than the highly-relevant topic
candidates. As shown in Fig. 8 (a) and Fig. 8 (c), the average
F-measure performances on both MCG-WEBV and YKS are
all stable at the optimal level for a wide range of θ; this is a
natural result due to the large relevance-level margin between
the highly relevant topic candidates and the less relevant ones.
Such property of θ provides us a safe window that strengthens
the robustness of the proposed topic detection method. As a
result, the integrity parameter θ is optimally set as θ = 0.65
and θ = 0.45 for MCG-WEBV and YKS, respectively.

The purity parameter η. The purity parameter η is used
to filter out the noise multi-modal data that are less relevant
with the merged topic candidates. Filtering such noise data
increases the purity of detected topics and improves the topic
detection performance. As shown in Fig. 8 (b) and Fig. 8 (d),
the average F-measure performances on both MCG-WEBV
and YKS are stable at the optimal level for a wide range of η.
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Fig. 8. The influence of θ and η on the average F-measure performance of
MMG+TR. (a) and (b) show the results on MCG-WEBV with C = 300 and
β = 0.01. (c) and (d) show the results on YKS with C = 350 and β = 1.0.
The optimal F-measure performances of MMG are plotted as green dashed
lines in each figure for clear comparison.

Fig. 9. The average precision, recall and F-Measure of the top-10 detected
topics on MCG-WEBV.

This is a reasonable result, since the positive data that belongs
to a real topic generally have a much higher relevance level
with the merged topic candidate than the noise data, and the
relevance-level margin is large. According to the experimental
result, the purity parameter η is optimally set as η = 0.5 and
η = 0.6 for MCG-WEBV and YKS, respectively.

C. Experiments on MCG-WEBV

In this section, we compare the topic detection performances
between the salient trajectory method (ST) [2], the tag group
method (TG) [3], MMG [4] and MMG+TR. The single-media
data set MCG-WEBV is used to evaluate the topic detection
performances, where all methods are compared with their
own optimal parameters. For both MMG and MMG+TR, the
parameters are optimally set as [C = 300, β = 0.01] and the
TR parameters are set as [θ = 0.65, η = 0.5].

Fig. 9 shows the comparison results of P@10, R@10 and
F@10. We can see that the F@10 performances of both TG
and MMG outperform ST, while MMG+TR achieves the best
F-measure performance. The experimental results in Table II
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TABLE II
THE TOPIC DETECTION PERFORMANCES OF MMG+TR AND MMG ON

MCG-WEBV.

Evaluation P@20 R@20 F@20 P@30 R@30 F@30
MMG+TR 0.9381 0.8898 0.9085 0.8835 0.8120 0.8327

MMG 0.9079 0.8410 0.8650 0.8969 0.7462 0.7975

TABLE III
THE COMPARISON RESULTS OF CP ON MCG-WEBV.

Data set Method NDT NCDT CP

MCG-WEBV
TG 83 31 37.35%

MMG 57 38 66.67%
MMG+TR 50 45 90.00%

further demonstrate the effectiveness of the topic recovery
approach, where MMG+TR generally outperforms MMG.

Table III shows the experimental results under the evaluation
criteria of CP. As it is shown, the CP performances of
MMG+TR and MMG significantly outperform TG, where both
MMG+TR and MMG detect more topics than TG. This is
attributed to the robustness and topic-sensitive property of
the naturally formed dense subgraphs in the multi-modality
graph. Besides, since TR merges the topic candidates detected
by MMG, the NDT of MMG+TR is smaller than MMG.
However, TR effectively increases entirety and purity of the
detected topics, which improves the quality of detected topics
and increases the NCDT of MMG+TR over MMG. In sum,
we can conclude from Table III that TR effectively improves
the CP performance of MMG by merging the highly relevant
topic candidates and filtering out the noise data.

D. Experiments on YKS

In this section, we analyze the topic detection performances
of TG, MMG and MMG+TR on the cross-media data set of
YKS. The source code of TG is kindly provided by T. Chen
[3]. Since the video topic detection approach TG is only able
to process the web video data in YKS, we fairly compare
with it by running MMG and MMG+TR on exactly the same
web video data set of YKS, which is referred to as “YKS-
V”. The corresponding topic detection performances of MMG
and MMG+TR on YKS-V are referred to as MMG-V and
MMG+TR-V. Additionally, the topic detection performances
of MMG and MMG+TR are further compared using the full
cross-media data set of YKS. All methods are compared with
their own optimal parameters:

1) On the web video data set YKS-V:
• TG : θ1 = 0.2; β1 = −0.25 and η1 = 0.43, which

are the native parameters of TG [3].
• MMG-V: β = 1, C = 200.
• MMG+TR-V: β = 0.1, C = 250, θ = 0.35, η =

0.55.
2) On the full cross-media data set YKS:

• MMG: β = 1.0, C = 350.
• MMG+TR: β = 1.0, C = 350, θ = 0.45, η = 0.6.

Fig. 10 shows the topic detection performances of TG,
MMG-V and MMG+TR-V. We can see that both MMG-V and
MMG+TR-V achieve better detection performances than TG,
which demonstrates the effectiveness of the proposed graph

Fig. 10. The average precision, recall and F-Measure of the top-10 detected
topics on YKS-V.

TABLE IV
THE TOPIC DETECTION PERFORMANCES OF MMG+TR AND MMG ON

YKS.

Method MMG+TR MMG
P@10 1.0000 0.9757
R@10 0.9639 0.9288
F@10 0.9808 0.9511
P@20 0.9747 0.9455
R@20 0.9126 0.8914
F@20 0.9380 0.9168
P@30 0.9603 0.9301
R@30 0.8704 0.8580
F@30 0.9054 0.8816

fusion framework. Furthermore, MMG+TR-V significantly
outperforms MMG-V from all aspects, which demonstrates
the effectiveness of the topic recovery (TR) approach. Table
IV shows the experimental results on the full cross-media data
set of YKS, which further demonstrate the effectiveness of TR
in improving the topic detection performance.

Table V shows the CP performances of all compared meth-
ods on YKS-V and YKS, where both MMG and MMG+TR
significantly outperform TG. Similar with the experimental
results on MCG-WEBV (see Table.III), the CP performances
on both YKS-V and YKS further demonstrate the effectiveness
of TR in improving the topic detection performances.

Table VI shows details about the detected topics, where
the correctly detected topics are divided into three groups
according to their modalities. The “Articles” refers to the
topics consisting of pure news articles; the “Videos” refers
to the topics only containing web videos; the “Hybrids” are
the topics that consist of both news articles and web videos.
“\” means the methods are not suitable to detect this type
of topics. Apparently, MMG+TR-V and MMG-V detect more
topics than TG in both the groups of “Videos” and “Hybrids”,
which proves the effectiveness of our method in dealing with
the multi-modal data from the single media of web video.
Moreover, MMG+TR and MMG not only detect more video-
related topics than MMG+TR-V and MMG-V, but also detect
many pure News article topics; this shows the significan-
t performance enhancement brought by the complementary
cross-media information and the effectiveness of the proposed
multi-modality graph fusion framework in dealing with the
incomplete multi-modal data from different media.
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TABLE V
THE COMPARISON RESULTS OF CP ON YKS-V AND YKS.

Data set Method NDT NCDT CP

YKS-V
TG 58 11 18.97%

MMG-V 57 23 40.35%
MMG+TR-V 48 30 62.50%

YKS MMG 276 117 42.39%
MMG+TR 233 124 53.21%

TABLE VI
THE COMPONENTS OF CORRECTLY DETECTED TOPICS ON YKS-V AND

YKS.

Data set Method Articles Videos Hybrids Total

YKS-V
TG \ 7 4 11

MMG-V \ 13 10 23
MMG+TR-V \ 14 16 30

YKS MMG 69 18 30 117
MMG+TR 93 7 24 124

E. Typical Results

To provide a more intuitive demonstration of the detected
topics, we presents some examples of the detected topics with
representative keyframes and key words. The representative
keyframes are selected as the near duplicated keyframes (ND-
K) with the largest shared times. The representative key words
are extracted by voting the latent topics (learnt by LDA [34])
with the text features of all data in the detected topic. The
significant keywords from the top-3 most voted latent topics
are then selected as the representative key words. Considering
that MCG-WEBV is a public data set, we present the detected
topics on it. Table VII lists the top-12 topics detected by M-
MG+TR on MCG-WEBV with their IDs and manually labeled
titles [52]. We also sample 3 typical examples from the top-12
detected topics and present the corresponding representative
key words and keyframes in TableVIII. As it is shown, the
extracted keyframes and key words are highly relevant to the
corresponding topics.

V. CONCLUSION

We present a cross-media topic detection system with three
key techniques to robustly detect topics from the multi-modal
data in multiple media. The multi-modality graph is proposed
to efficiently fuse the heterogenous cross-media data together
and optimize the usage of rich multi-modal information. The
time decay coefficient models the time characteristics of data
and makes it controllable to detect topics with different time
span. The topic recovery approach merges the falsely segment-
ed topics and filters out the noise data to improve the entirety
and purity of detected topic candidates. As demonstrated by
extensive experiments, the fusion of cross media data leads to
significant information gain, which largely improves the topic
detection performance. The proposed cross-media detection
approach is robust in detecting topics from the multi-modal
data in different media. In our future work, we will extend
our method to modeling the evolution trend of topics under
streaming data.
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TABLE VII
TOP-12 HOT TOPICS AMONG THE 45 CORRECTLY DETECTED TOPICS IN

MCG-WEBV

Topic ID Description
28 Hajime no Ippo New Challenger, a cartoon.
51 WWE SmackDown, a popular TV shows held

by World Wrestling Federation.
50 Mozart’s Greatest Hits.
41 South Africa trip videos.
53 BBC Nature’s Great Events.
3 New characteristic in google earth 5.0.
22 Amazing car accident.
16 The videos about Madonna’s Concert in brazil.
39 Application videos for the best job in the world,

island caretaker on Australia’s Great Barrier Reef.
19 HotForWords: one popular channel on YouTube hosted

by Marina Orlova for discussing the origins of words.
11 Videos about the dream boxing match.
1 Bush was attacked by shoes in press conference in Iraq
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