
Primary Key Free Watermarking for Numerical
Tabular Datasets in Machine Learning

Xin Che1[0000−0001−8784−5345], Mohammad Akbari2[0000−0002−5663−3101],
Shaoxin Li1[0009−0009−0695−8803], David Yue3[0000−0002−8271−348X], Yong
Zhang2[0000−0002−0238−0719], and Lingyang Chu⋆1[0000−0002−8937−1750]

1 McMaster University, Hamilton, Ontario, Canada.
{chex5,li2018,chul9}@mcmaster.ca

2 Huawei Technologies Canada Co., Ltd. Burnaby, BC, Canada.
{mohammad.akbari,yong.zhang3}@huawei.com

3 University of Toronto, Toronto, Ontario, Canada.
david.yue@mail.utoronto.ca

Abstract. High-quality tabular datasets are often traded by their own-
ers as valuable digital assets due to their scarcity and usefulness in
training machine learning models. A pivotal concern when trading the
datasets is their ownership, which is seriously threatened by piracy due to
the simplicity of reselling illegal copies. This produces an urgent demand
for an effective watermarking method to demonstrate the ownership of
the dataset. Existing database watermarking methods rely on either a
primary key or a virtual primary key to watermark a tabular dataset.
These methods cannot work well in the context of machine learning, be-
cause a primary key can be easily modified without affecting the machine
learning utility of a tabular dataset, and a virtual primary key is often
not robust against watermark-removing attacks. How to watermark a
tabular dataset without using a primary key or virtual primary key is
a challenging task that has not been systematically studied before. In
this paper, we tackle this task by a novel primary key free method that
embeds a sinusoidal signal as the watermark into a discrete-time signal
constructed from the tabular dataset. We conduct an in-depth theoreti-
cal analysis on the exceptional robustness of our watermark against five
challenging attacks, and further validate the robustness through compre-
hensive experiments on two real-world datasets.

Keywords: primary key free · tabular dataset watermarking · robust.

1 Introduction

Artificial intelligence powered by machine learning has brought significant bene-
fits to the modern society. In many successful applications, large machine learn-
ing models are fueled by huge amount of tabular datasets, such as market-
ing data [8], healthcare data [4], environment & climate data [13], and sensor
⋆ Corresponding author

2 X. Che et al.

data [16]. Due to the enormous efforts and cash invested in data collection and
management, these datasets are often regarded as high value digital assets of
their owners. However, when these datasets are traded in the market, their safety
is usually threatened by piracy due to the simplicity of creating and reselling
illegal copies. This produces an urgent demand for an effective watermarking
method that embeds a detectable watermark into a dataset to demonstrate the
ownership of the dataset and its copies.

As discussed later in Section 2, existing methods are mostly not robust to
watermark removing attacks because they embed their watermarks based on the
primary key (PK) [2,3,15,37] or virtual primary key (VPK) [3,9,10,25]. The use
of PK and VPK significantly weaken the robustness of existing methods against
attacks, because both PK and VPK can be easily modified by an attacker to
remove the watermark without significantly decreasing the machine learning
utility of the dataset. As far as we know, how to watermark a tabular dataset
without using a primary key (or a virtual primary key) is a novel and challenging
task that has not been well studied in the literature.

In this paper, we systematically tackle this task by formulating and solving
a novel problem named primary key free watermarking for numerical tabular
datasets. We make the following contributions. First, we propose the novel task
of primary key free watermarking for tabular datasets. The goal is to embed
and detect watermarks on tabular datasets without using primary key (or a vir-
tual primary key) while achieving good robustness against watermark-removing
attacks. Second, we successfully tackle the problem with a carefully designed
watermarking method. The key idea is to first map the data instances in a tab-
ular dataset to a discrete-time signal, and then embed a watermark by adding
a sinusoidal signal to the discrete-time signal. The watermark can be accurately
detected by checking the existence of the sinusoidal signal. Last, we conducted
extensive experiments on two real-world datasets to compare the performance of
our method with five state-of-the-art baseline methods. The experimental results
demonstrate the superior robustness of our watermark against six challenging
watermark-removing attacks.

2 Related Work

Many existing works [3, 10, 12, 15, 19, 25, 33–35] have been proposed to embed
and detect watermarks in tabular datasets. Our work is related to the following
methods.

The primary key methods [2,3,17,35] rely on the primary key of a tabular
dataset to embed and detect watermarks. Most primary key methods [2, 3, 12,
35, 37] use a primary key to uniquely identify watermarked data instances in
order to accurately detect watermark. Some other works [5, 15, 20, 26, 32–35,
35] use primary key to organize data instances in groups to embed and detect
watermarks. These methods work well when the primary key of a watermarked
tabular dataset stays unchanged. However, they cannot accurately detect the
watermark if an attacker modifies the primary key. Since modifying the primary

PKF Watermarking for Numerical Tabular Datasets 3

key of a tabular dataset often does not reduce its machine learning utility in
training good machine learning models, the resale value of the tabular dataset in
the application areas of machine learning is not affected. Therefore, the primary
key methods cannot effectively protect tabular datasets against piracy, because
an attacker can easily modify the primary key of a watermarked tabular dataset
to create an illegal copy, which successfully escapes watermark detection and
also preserves the resale value.

The virtual primary key methods [3,9,10,25] compute a virtual primary
key (VPK) from data instances and use it as a substitution of primary key to
embed and detect watermarks. For example, Agrawal et al. [3] use the most
significant bits of an attribute to compute VPK. Li et al. [25] select multiple
attributes to compute VPK. By using a VPK, existing primary key methods
can be extended to watermark a tabular dataset. These methods are robust to
primary key modification, because they do not use primary key and the VPK
is secretly computed from data instances. However, a watermark embedded by
using VPK is often not robust against watermark-removing attacks [3,22,34,35],
because modifying the data instances changes the values of VPK [10,11,34]. As
a result, by slightly modifying the tabular dataset, an attacker can remove a
VPK-based watermark without causing much damage to the machine learning
utility of the dataset.

To the best of our knowledge, our work is the first in the literature to water-
mark a numerical tabular dataset without using a primary key (or a virtual pri-
mary key) while achieving outstanding robustness against watermark-removing
attacks. This makes our work particularly effective in protecting numerical tab-
ular datasets against piracy in the application areas of machine learning.

3 Task Definition

In this section, we first introduce a typical application example of the proposed
numerical tabular dataset watermarking task in Figure 1. Then, we give the
formal definition of our task.

Secret key	𝒦! Secret key	𝒦"

Alice Original dataset 𝑄

Mike Watermarked dataset 𝑄"# Attacked dataset 𝑄$Bob Watermarked dataset 𝑄!#

PK-free watermark embedding

Watermark-removing attacks

PK-free watermark detection

claim copyright

when using 𝒦" → 𝑊" = 1
when using 𝒦! → 𝑊! = 0

Fig. 1. A typical application scenario.

Example 1 (A typical application). As shown in Figure 1, Alice owns a valuable
numerical tabular dataset Q and she wants to sell it to Bob and Mike. Before

4 X. Che et al.

selling Q, Alice uses two different secret keys KB and KM to embed two different
watermarks in Q. The watermarked dataset Q′

B produced by KB is sold to
Bob. The watermarked dataset Q′

M produced by KM is sold to Mike. Mike uses
watermark-removing attacks to modify Q′

M into Q̂ and put Q̂ on the market for
sale. Alice uses each of KB and KM to detect watermark from Q̂, which produces
WB = 0 and WM = 1, respectively. Since WM = 1 means Q̂ is watermarked by
KM , Alice demonstrates her ownership on Q̂ and she also knows Q̂ comes from
the copy she sold to Mike.

Next, we first define some related concepts and then introduce the formal
definition of our task, which includes two parts such as primary key (PK)-free
watermark embedding and PK-free watermark detection.

Definition 1 (Numerical tabular dataset). A numerical tabular dataset is
represented by a matrix, denoted by Q ∈ Rn×d, where each row stores one
data instance and each column corresponds to one attribute of the data instances.
A tabular dataset is also called a “dataset” in short.

Definition 2 (Machine learning utility). Given a numerical tabular dataset
Q, the machine learning utility (MLU) of Q, denoted by MLU(Q), indicates the
effectiveness of Q in training good machine learning models. It is measured by
the performance of a machine learning model trained on Q [19,24].

Definition 3 (Secret key). Denote by Q an original dataset that is not em-
bedded with a watermark and by Q′ the watermarked dataset that is embedded
with a watermark. A secret key, denoted by K, is a cryptographic key that is used
to embed and detect watermark from Q′.

The secret key K is completely different from a primary key (PK) or a virtual
primary key (VPK). In typical watermarking systems [3], K often consists of a set
of variables storing the information to generate and identify a watermark. While
PK and VPK are unique identifiers of data instances. Different watermarking
systems use different types of secret keys. Leaking K exposes the watermark
embedded in Q′, which makes it vulnerable to watermark-removing attacks.
Thus, K is often kept secret by the owner of the dataset Q.

Definition 4 (PK-free watermark embedding). Given Q, K and a positive
threshold γ, the process of watermark embedding produces Q′ by modifying the
data instances in Q. This process should satisfy: (1) no primary key is used; (2)
Q′ carries a watermark that can be verified by K; and (3) |MLU(Q)−MLU(Q′)| ≤ γ.

In the above conditions, (1) requires the embedded watermark to be inde-
pendent from primary key, which improves the robustness of watermark against
primary key modification. (2) means Q′ is watermarked by K. (3) establishes an
MLU constraint, which limits the damage on MLU(Q) caused by the modifica-
tion on Q when embedding the watermark. This preserves the resale value of Q′

because MLU(Q′) is close to MLU(Q).

PKF Watermarking for Numerical Tabular Datasets 5

Definition 5 (PK-free watermark detection). Given K and a suspicious
dataset Q̂ that may or may not be watermarked by K, the process of watermark
detection verifies whether Q̂ is watermarked by K. This process returns a binary
variable W ∈ {0, 1}, where W = 1 means Q̂ is watermarked by K and W = 0
means Q̂ is not watermarked by K. This process should satisfy: (1) no primary
key is used; (2) the original dataset Q is not used; and (3) the value of W cannot
be flipped without significantly modifying Q̂.

In the above conditions, (1) requires the watermark detection to be primary
key free, which mitigates the influence of primary key modification on water-
mark detection. (2) is a classic requirement of blind watermark detection [15];
it reduces the risk of unauthorized access to the original dataset Q, because the
watermark can be detected without revealing Q [3,15,34]. (3) means an attacker
has to significantly modify Q̂ in order to escape watermark detection. Since a
larger modification on Q̂ causes more damage to MLU(Q̂), it reduces more resale
value of Q̂, which lowers the interest of the attacker in attacking Q̂.

4 PK-free Watermark Embedding

The key idea of PK-free watermark embedding is to first map the data instances
to a discrete-time signal in a two-dimensional space, and then add a sinusoidal
signal with a specific frequency to the discrete-time signal by modifying the data
instances. This embeds the sinusoidal signal as a watermark into the dataset.

4.1 Mapping Dataset to Discrete-time Signal

To map the data instances in a tabular dataset to a discrete-time signal in a
two-dimensional space, we design a pair of mapping functions, denoted by ϕx(·)
and ϕy(·), where ϕx(·) maps a data instance to a real-valued x-coordinate and
ϕy(·) maps the same data instance to a real-valued y-coordinate. This maps each
data instance to a pair of x and y coordinates, which represents a point in a two-
dimensional space. Then, the points of all the data instances are summarized in
groups to form the discrete-time signal.

Denote by Qi,: the i-th data instance in a tabular dataset Q ∈ Rn×d, and
by ex, ey ∈ Rd a random pair of orthogonal vectors with L2-norm equal to one.
The mapping function ϕy(·) that maps Qi,: to a y-coordinate yi is defined as

yi = ϕy(Qi,:) = Qi,:e
⊤
y , (1)

which is simply the projection of Qi,: on ey. The mapping function ϕx(·) that
maps Qi,: to an x-coordinate xi is defined as

xi = ϕx(Qi,:) =
⌊Qi,:e

⊤
x

b ⌋
τ

, (2)

where b ∈ R+ and τ ∈ R+ are positive real-valued hyperparameters, and ⌊·⌋ is
the flooring operator that rounds a real number down to the closest integer. The

6 X. Che et al.

Algorithm 1 Watermark embedding
Input: An original dataset Q and a secret key K.
Output: A watermarked dataset Q′.
1: Initialize Q′ as a zero matrix in the same size as Q.
2: for each data instance Qi,: in Q do
3: Compute: xi = ϕx(Qi,:).
4: Update: Q′

i,: = Qi,: + λ sin(2πθxi) ∗ ey. (See Equation (4))
5: end for
6: Return Q′.

numerator ⌊Qi,:e
⊤
x

b ⌋ in Equation (2) conducts a binning operation that projects
Qi,: into a bin and returns the index of the bin. The hyperparameter b is the
bin width of each bin. By dividing the index of bin over τ , Equation (2) maps
the index of bin into an x-coordinate, where 1

τ is the step size between the
x-coordinates of neighbouring bins.

The tuple (xi, yi) mapped from Qi,: represents a point in a two-dimensional
space. By mapping each Qi,: in Q to a point, we obtain a set of points, denoted
by Z =

{
(xi, yi) | xi = ϕx(Qi,:), yi = ϕy(Qi,:), i ∈ {1, . . . , n}

}
. The points in

Z cannot form a discrete-time signal because some points may have the same
x-coordinates and different y-coordinates due to the binning operation in Equa-
tion (2). To convert the points in Z into a discrete-time signal, we first group
each subset of points with the same x-coordinates into a bin, denoted by

Bh = {(xi, yi) | xi = h, (xi, yi) ∈ Z}, (3)

where h is the value of the x-coordinates of the points in Bh. Then, we summarize
the points in Bh into a mean point, denoted by (x, y), where x = h is the mean of
the x-coordinates of the points in Bh, and y is the mean of the y-coordinates of
the points in Bh. By doing the above summarization for each possible value of h,
we convert the points in Z into a set of mean points with distinct x-coordinates.
This set of mean points forms the discrete-time signal, denoted by T . This maps
Q to the discrete-time signal T , which is written as T = φ(Q).

4.2 Adding Sinusoidal Signal

In this section, we introduce how to add a sinusoidal signal with a specific fre-
quency to the discrete-time signal T by slightly modifying the data instances in
Q. The sinusoidal signal is denote by y = λ sin(2πθx), where λ is the amplitude
of the signal, and θ is the frequency of the signal. To add the sinusoidal signal
into T , we first map Qi,: to xi = ϕx(Qi,:), and then update Qi,: by

Q′
i,: = Qi,: + λ sin(2πθxi) ∗ ey. (4)

By applying Equation (4) on every Qi,: in Q, we modify Q into a watermarked
dataset Q′, where the sinusoidal signal is embedded as a watermark.

PKF Watermarking for Numerical Tabular Datasets 7

We summarize the method to generate Q′ in Algorithm 1, where the secret key,
denoted by K = {ex, ey, θ, b, τ}, contains the necessary variables to verify the
watermark (i.e., the sinusoidal signal). The time complexity of Algorithm 1 is
O(nd), where n and d are the numbers of rows and columns in Q, respectively.

Theorem 1. If Q′ is obtained by Algorithm 1, then T ′ = φ(Q′) contains a
component of the sinusoidal signal with frequency θ.

Proof. We prove this theorem by showing that, for every mean point (x′, y′) ∈ T ′,
the analytical form of y′ contains a sinusoidal term λ sin(2πθx′). Without loss
of generality, we assume x′ = h and derive the analytical form of y′ as follows.

Since x′ = h, we know (x′, y′) is summarized from the bin

B′
h =

{
(x′

i, y
′
i) | x′

i = h, (x′
i, y

′
i) ∈ Z ′}, (5)

where Z ′ =
{
(x′

i, y
′
i) | x′

i = ϕx(Q
′
i,:), y

′
i = ϕy(Q

′
i,:), i ∈ {1, . . . , n}}.

For each point (x′
i, y

′
i) ∈ B′

h, we can derive from Equation (4) and exe
⊤
y = 0

that Q′
i,:e

⊤
x = Qi,:e

⊤
x . Then, we can derive from Equation (2) that

x′
i = ϕx(Q

′
i,:) =

⌊Q′
i,:e

⊤
x

b ⌋
τ

=
⌊Qi,:e

⊤
x

b ⌋
τ

= ϕx(Qi,:) = xi. (6)

Since (x′
i, y

′
i) ∈ B′

h, we know x′
i = h by the definition of B′

h. Thus,

x′
i = xi = h. (7)

Since eye
⊤
y = 1, we can derive from Equations (1) and (4) that

y′i = Q′
i,:e

⊤
y = Qi,:e

⊤
y + λ sin(2πθxi) = yi + λ sin(2πθxi). (8)

By plugging Equation (7) into the above equation, we have

y′i = yi + λ sin(2πθh), (9)

which holds for every point (x′
i, y

′
i) ∈ B′

h.
Since y′ is the mean of the y-coordinates of all the points (x′

i, y
′
i) ∈ B′

h, we
can derive the analytical form of y′ as

y′ =
1

|B′
h|

∑
(x′

i,y
′
i)∈B′

h

y′i =
(1

|B′
h|

∑
(x′

i,y
′
i)∈B′

h

yi

)
+ λ sin(2πθh). (10)

Since x′ = h, the analytical form of y′ is

y′ =
(1

|B′
h|

∑
(x′

i,y
′
i)∈B′

h

yi

)
+ λ sin(2πθx′), (11)

which contains the sinusoidal term λ sin(2πθx′) with frequency θ.

8 X. Che et al.

Algorithm 2 Watermark detection
Input: A suspicious dataset Q̂, a confidence level p ∈ [0, 1] and K.
Output: The detection result W ∈ {0, 1}.
1: Obtain the discrete-time signal T̂ = φ(Q̂).
2: Obtain the spectrum power P̂ (θ) from T̂ by LSP [36].
3: Use LSP to estimate the threshold ηp from p.
4: If P̂ (θ) ≥ ηp, then return W = 1. (Watermark is detected)
5: If P̂ (θ) < ηp, then return W = 0. (Watermark is not detected)

According to Theorem 1, T ′ contains the sinusoidal signal with frequency θ,
which means Q′ is successfully embedded with the sinusoidal signal by Algo-
rithm 1.

Theorem 2. Denote by η the maximum absolute value of all the entries in ey
and by △i,j = |Qi,j −Q′

i,j | the absolute modification made on the j-th attribute
of Qi,: when embedding the watermark. If Q′ is obtained by Algorithm 1, then
△i,j ≤ λη.

Proof. Since each Q′
i,: is obtained by modifying Qi,: using Equation (4) and

−1 ≤ sin(2πθxi) ≤ 1, we have △i,j ≤ λη.

5 PK-free Watermark Detection

In this section, we introduce how to detect a watermark from a suspicious dataset
Q̂ that may or may not be watermarked by a secret key K.

Denote by T̂ the discrete-time signal of Q̂. We obtain T̂ by mapping the data
instances in Q̂ in the same way as how we map Q to T , that is, T̂ = φ(Q̂).
This process requires to know the variables ex, ey, b and τ in K. Then, we check
whether T̂ contains the sinusoidal signal with the frequency θ ∈ K by checking
the spectrum power of T̂ at the frequency θ, denoted by P̂ (θ).

We use Lomb-Scargle Periodogram (LSP) [27, 36] to compute the spectrum
power P̂ (θ) of T̂ . LSP provides a probabilistic method to determine whether a
sinusoidal signal is a true signal in T̂ [36]. Denote by p ∈ [0, 1] the probability of
a sinusoidal signal being a true signal in T̂ , LSP estimates a threshold ηp based
on p. If P̂ (θ) ≥ ηp, then the probability of T̂ containing the sinusoidal signal
with frequency θ is at least p. This allows us to use p as a confidence level when
detecting watermark from T̂ . For example, we can set p = 0.99 and compare
P̂ (θ) with the threshold η0.99. If P̂ (θ) ≥ η0.99, then T̂ is watermarked by K
at the confidence level of 0.99. Otherwise, T̂ is not watermarked by K at the
confidence level of 0.99. Algorithm 2 summarizes how to detect watermark. The
time complexity is O

(
n(d + 1)

)
, where n and d are the number of rows and

columns of Q̂, respectively.

PKF Watermarking for Numerical Tabular Datasets 9

6 Threat Model and Attacks

In this section, we provide a comprehensive discussion of the four requirements
of the threat model and delve into six typical watermark-removing attacks that
an attacker might employ.

Threat model. Following the literature [14, 21, 29, 30, 34], we consider a
typical threat model consisting of four requirements: (1) the attacker can access
the watermarked dataset Q′; (2) the attacker cannot access the original dataset
Q; (3) the attacker cannot access the secret key K; and (4) the attacker cannot
change the feature space of the original attributes in Q′. Here, the requirement
(4) is practical because the semantic meaning (e.g., meta-data) carried by the
original attributes of Q′ is a valuable part of Q′. Moreover, if the feature space of
an attacked dataset, denoted by Q̃, is different from the feature space of Q′, then
a machine learning model trained on Q̃ cannot generalize to new data instances
represented by the original attributes of Q′.

Watermark-removing attacks. We consider the following typical attacks
in the literature. (1) Uniform alteration (UA) [15, 30, 34] adds uniform noise
sampled from U [−ρua, ρua] to the attributes of all the data instances in Q′.
A larger ρua implies a stronger attack. (2) Row deletion (RD) [15, 21, 30, 34]
deletes uniformly sampled data instances of Q′. Denote by ρrd the proportion
of the deleted data instances in Q′, a larger ρrd implies a stronger attack. (3)
Row insertion (RI) [15,21,30,34] inserts noise data instances to Q′. For each noise
data instance, the j-th entry is sampled from a uniform distribution U [µj −
σj , µj + σj], where µj and σj are the mean and standard deviation of j-th
attribute of Q′. Denote by ρri the proportion of inserted noise data instances, a
larger ρri implies a stronger attack. (4) Column deletion (CD) deletes uniformly
sampled columns in Q′. Denote by ρcd the proportion of the deleted columns, a
larger value of ρcd implies a stronger attack. (5) PCA attack (PCA) modifies the
data instances in Q′ by using principal component analysis (PCA) [1] to perform
dimensionality reduction. We map the data instances back to the original feature
space after discarding k dimensions in the feature space spanned by eigenvectors.
Denote by ρpca = k

d the proportion of discarded dimensions, a larger ρpca implies
a stronger attack. (6) Re-watermarking (RE) [18] attacks the original watermark
in Q′ by embedding a new watermark into Q′. We use the proposed watermarking
method to embed the new watermark. Denote by ρre the amplitude of the new
sinusoidal signal y = ρre ∗ sin(2πθx) embedded into Q′, a larger ρre implies a
stronger attack.

7 Experiments

In this section, we conduct comprehensive experiments on two real-world datasets
to study the performance of our method and five baseline methods. We focus
on answering two questions: (1) How robust are the watermarks of each water-
marking method against the attacks? (2) How is the machine learning utility of

10 X. Che et al.

Table 1. Information of datasets.

Dataset #Instances #Attributes #Classes

Forest cover type (FCT) dataset [29] 581,012 54 7
Gas sensor array drift (GSAD) dataset [7] 13,910 128 6

a watermarked dataset affected by the attacks? All the experiments were con-
ducted on a desktop with an Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz and
64 gigabytes of RAM.

Datasets. We use the two real-world datasets FCT4 and GSAD5 in Table 1.
Since the original FCT dataset is too big for the baseline methods OBT [34] and
IP [19] to finish the experiments in practical time, we uniformly sample 50% of
instances from the original FCT dataset to do our experiments. Following the
setting of [20], we use the top-4 (top-20) attributes with the largest information
gain to embed watermark in FCT (GSAD). Denote by m the number of at-
tributes used to embed watermark. Embedding watermark in this way increases
the cost of conducting column deletion attack, because deleting a column with
a larger information gain causes more damage to the machine learning utility of
the dataset.

Machine learning utility (MLU). We evaluate the MLU of a dataset by
the testing accuracy of a machine learning model. Each dataset is uniformly
split into a training set and a testing set with a ratio of 4:1. The training set is
used to embed/detect watermarks and train the machine learning model. The
testing set is used to evaluate the machine learning model’s testing accuracy,
which is regarded as the MLU of the training dataset. We evaluate MLU by two
machine learning models, such as multi-class logistic regression (LR) model [23]
and multi-class support vector machine (SVM) [38].

Baseline methods. We use five baseline methods, such as NR [33], OBT [34],
IP [19], GAHSW [15], and SCPW [30]. These methods need a primary key or
a virtual primary key to work properly. Since an attacker can easily modify the
primary key to remove a watermark without damaging the dataset’s machine
learning utility, we develop two versions of implementations for each baseline
method by using two state-of-the-art virtual primary key generation methods.
One version uses M-Scheme [25] to implement the baselines as NR-M, OBT-M,
IP-M, GAHSW-M and SCPW-M. The other version uses HQR [10] to implement
the baselines as NR-H, OBT-H, IP-H, GAHSW-H and SCPW-H.

Secret keys. For each of the compared methods, we use 10 independent se-
cret keys, denoted by K(1), . . . ,K(10), to embed watermarks. The baseline meth-
ods use a sequence of bits as a secret key and we use 16 bits as the default
length of each secret key. For each baseline method, we use 10 secret keys with
maximum pairwise hamming distance. For our method, the sampled values of
θ, b and τ in the 10 secret keys are listed in Table 2. The vectors ex and ey

4 https://archive.ics.uci.edu/dataset/31/covertype
5 https://archive.ics.uci.edu/dataset/224/gas+sensor+array+drift+dataset

PKF Watermarking for Numerical Tabular Datasets 11

Table 2. The θ, b and τ of the 10 secret keys used for FCT and GSAD.

Dataset FCT GSAD

Secret keys K(1) K(2) K(3) K(4) K(5) K(6) K(7) K(8) K(9) K(10) K(1) K(2) K(3) K(4) K(5) K(6) K(7) K(8) K(9) K(10)

θ 30 27 30 32 29 34 37 40 38 39 30 32 34 33 35 36 38 29 35 37
b (×10−2) 0.8 0.5 0.5 2.0 3.0 0.8 2.0 2.0 1.0 1.0 0.2 0.1 0.5 1.0 0.2 2.0 1.0 2.0 0.4 0.8
τ (×104) 1.0 1.0 0.3 0.5 1.0 0.5 0.9 0.8 0.6 0.8 0.5 0.4 1.0 0.6 0.8 1.0 0.3 0.3 0.5 0.3

for each secret key are randomly sampled as a pair of orthogonal vectors with
L2-norm equal to one.

Watermark strength. The watermark strength in a dataset refers to the
intensity of the embedded watermark signal [28]. A stronger watermark enhances
robustness against removal attacks but also increases dataset modification, re-
ducing MLU [31]. Thus, increasing watermark strength trades MLU for robust-
ness. To fairly compare the robustness of all methods, we allow each to trade up
to 0.01 MLU for robustness, setting γ = 0.01 for the MLU constraint in condi-
tion (3) of Definition 4. Based on this constraint, we set the default value of λ
for our method to 20 for GSAD and 0.8 for FCT unless otherwise specified.

7.1 How to Evaluate Performance?

We evaluate the performance of a watermarking method by performing the fol-
lowing steps.

Step1: embedding watermarks. Denote by Q(0) the training set of an
original dataset that is not watermarked. We use each of the secret keys K(1), . . . ,
K(10) to embed a watermark in Q(0). This produces 10 watermarked datasets,
denoted by Q′

(1), . . . , Q
′
(10), where K(i) is the ground truth secret key of Q′

(i). The
ground truth secret key of Q(0) is denoted by K0, which means no watermark is
embedded in Q(0). In this way, we construct a collection of datasets denoted by
C = {Q(0), Q

′
(1), . . . , Q

′
(10)}.

Step 2: conducting attacks. We attack the datasets in C before detecting
the watermarks. For each attack, we produce a collection of attacked datasets,
denoted by C̃ = {Q̃(0), Q̃(1), . . . , Q̃(10)}.

Step 3: detecting watermarks. We use each of K(1), . . . ,K(10) to detect
watermark from the datasets in C̃. Denote by Detect(Q̃(j),K(i)) → W the pro-
cess of using K(i) to detect watermark from Q̃(j). If Detect(Q̃(j),K(i)) = 1, then
we have a positive detection. If Detect(Q̃(j),K(i)) = 0, then we have a negative
detection. A positive detection is a true positive if K(i) is the ground truth se-
cret key of Q̃(j); otherwise, it is a false positive. A negative detection is a true
negative if K(i) is not the ground truth secret key of Q̃(j); otherwise, it is a false
negative. Last, we compute the true positive rate and false positive rate.

Step 4: evaluating performance. We evaluate the performance of a wa-
termarking method by the area under curve (AUC) of the receiver operating
characteristic (ROC) curve [6]. A larger AUC means a better performance. For
each compared method, the ROC curve is obtained by changing the value of the

12 X. Che et al.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
NR-M NR-H OBT-M OBT-H IP-M IP-H GAHSW-M GAHSW-H SCPW-M SCPW-H Ours

0.0 0.2 0.4 0.6 0.8 1.0
ua

0.50

0.75

1.00

AU
C

on
 F

CT

(a) UA (ρ∗ua = 1.0)

0.0 0.2 0.4 0.6 0.8 1.0
rd

0.50

0.75

1.00

AU
C

on
 F

CT

(b) RD (ρ∗rd = 0.99)

0.0 0.5 1.0 1.5 2.0
ri

0.50

0.75

1.00

AU
C

on
 F

CT

(c) RI (ρ∗ri = 2.0)

0.0 0.2 0.4 0.6 0.8 1.0
cd

0.50

0.75

1.00

AU
C

on
 F

CT

(d) CD (ρ∗cd = 50
54
)

0.0 0.2 0.4 0.6 0.8 1.0
pca

0.50

0.75

1.00

AU
C

on
 F

CT
(e) PCA (ρ∗pca = 50

54
)

0 2 4 6 8 10
re

0.50

0.75

1.00

AU
C

on
 F

CT

(f) RE (ρ∗re = 10)

0.0 0.2 0.4 0.6 0.8 1.0
ua

0.50

0.75

1.00

AU
C

on
 G

SA
D

(g) UA (ρ∗ua = 1.0)

0.0 0.2 0.4 0.6 0.8 1.0
rd

0.50

0.75

1.00
AU

C
on

 G
SA

D

(h) RD (ρ∗rd = 0.99)

0.0 0.5 1.0 1.5 2.0
ri

0.50

0.75

1.00

AU
C

on
 G

SA
D

(i) RI (ρ∗ri = 2.0)

0.0 0.2 0.4 0.6 0.8 1.0
cd

0.50

0.75

1.00

AU
C

on
 G

SA
D

(j) CD (ρ∗cd = 120
128

)

0.0 0.2 0.4 0.6 0.8 1.0
pca

0.50

0.75

1.00

AU
C

on
 G

SA
D

(k) PCA (ρ∗pca = 120
128

)

0 2 4 6 8 10
re

0.50

0.75

1.00

AU
C

on
 G

SA
D

(l) RE (ρ∗re = 10)

Fig. 2. The AUC on FCT shown in (a)-(f) and GSAD shown in (g)-(l). The
ρ∗ua, ρ

∗
rd, ρ

∗
ri, ρ

∗
cd, ρ

∗
pca and ρ∗re are the maximum values of each parameter.

threshold that decides whether a watermark exists or not. Different methods use
different thresholds, for our method, the threshold is ηp in Algorithm 2.

7.2 How Robust Are the Watermarks?

In this section, we analyze the robustness of watermark against the attacks listed
in Section 6. Figure 2 shows the AUC of each watermarking method on FCT
and GSAD. The y-axis shows the AUC and the x-axis shows the strength of
each attack controlled by ρua, ρrd, ρri, ρcd, ρpca and ρre in Section 6.

We can see in Figure 2 that the AUC of most methods drops when the at-
tack strength increases. A slower dropping speed of AUC means a better perfor-
mance, because it implies the watermarking method is more robust to withstand
a stronger attack. Since the AUC on FCT and GSAD show similar trends, we
focus on explaining the results on FCT.

The AUC of baseline methods. As shown in Figure 2, the AUC of the
baseline methods are inferior to our method because they are affected by attacks
due to the following reasons. First, since these methods use virtual primary keys
to identify the watermarked groups of data instances, their watermarks are not

PKF Watermarking for Numerical Tabular Datasets 13

robust to uniform alteration, column deletion, PCA attack and re-watermark.
This is because such attacks change the values of virtual primary key, which cor-
rupts the identification of the watermarked groups. Second, the watermarks of
OBT, IP, GAHSW and SCPW are affected by row deletion (RD) and row inser-
tion (RI), because RD removes watermarked data instances from watermarked
groups and RI adds noise data instances into watermarked groups. Both the
effects weakens the watermark signal. NR is affected by row deletion and row
insertion because it relies on the accurate alignment between the data instances
before and after attack. The alignment between data instances is disrupted by
RD and RI because they change the number of data instances.

The AUC of our method. As shown in Figure 2, our method achieves the
best AUC, which demonstrates the outstanding robustness of our watermark.
In the following, we discuss the performance of our method against each attack.
(1) Uniform alteration (UA). In Figures 2(a) and 2(g), our method is robust
to UA because: i) it is primary key free, enhancing noise robustness; ii) the
x-axis binning operation stabilizes the discrete time signal against noise; and
iii) the Lomb-Scargle Periodogram (LSP) [27, 36] is noise-resistant. UA has a
bigger impact upon our method on FCT than on GSAD because GSAD has
more attributes than FCT, thus embedding a watermark causes less damage to
the MLU of GSAD than FCT. This allows our method to embed a stronger
watermark on GSAD without violating the MLU constraint in Definition 4. (2)
Row deletion (RD) and row deletion (RD). In Figures 2(b), 2(c), 2(h) and 2(i),
our method achieves outstanding AUC against RD and RI. Because RD removes
watermarked points from B′

h and RI adds noise points in B′
h, but neither changes

the remaining watermarked points in B′
h. Thus, the watermark signal is largely

retained. (3) Column deletion (CD). In Figures 2(d) and 2(j), CD impacts our
method’s AUC because deleting one of the m watermarked columns (i.e., at-
tributes) in Q′ removes 1

m of the watermark signal. However, since our water-
mark is embedded in multiple columns that are unknown to the attacker, we
still achieve high AUC even when half the columns of Q′ are randomly deleted.
(4) PCA attack. In Figures 2(e) and 2(k), the impact of PCA attack is smaller
than column deletion. This is because the dimensions discarded by PCA attack
often have small information gain but we embed our watermark in the columns
with large information gain. (5) Re-watermarking (RE). In Figures 2(f) and 2(l),
the AUC of our watermark is robust against RE. This is because embedding a
new watermark adds random noise to Q′, which has a similar effect to uniform
alteration attack. Therefore, our watermark is robust against RE.

7.3 How Is MLU Affected by the Attacks?

Figure 3 shows the MLU of each watermarked dataset under different strengths
of attacks. The x-axis is defined in the same way as Figure 2 and the y-axis
shows the MLU of the attacked watermarked datasets.

Since drawing all the MLU curves is too crowded, we simplify the view as
follows. First, for MLU measured by LR, we only draw the MLU of our method

14 X. Che et al.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

NR-H (LR) OBT-H (LR) IP-H (LR) GAHSW-H (LR) SCPW-H (LR) Ours (LR) SVM

0.0 0.2 0.4 0.6 0.8 1.0
ua

0.60
0.65
0.70
0.75

M
LU

 o
n

FC
T

(a) UA (ρ∗ua = 1.0)

0.0 0.2 0.4 0.6 0.8 1.0
rd

0.67

0.70

0.73

M
LU

 o
n

FC
T

(b) RD (ρ∗rd = 0.99)

0.0 0.5 1.0 1.5 2.0
ri

0.66

0.70

0.73

M
LU

 o
n

FC
T

(c) RI (ρ∗ri = 2.0)

0.0 0.2 0.4 0.6 0.8 1.0
cd

0.63

0.68

0.73

M
LU

 o
n

FC
T

(d) CD (ρ∗cd = 50
54
)

0.0 0.2 0.4 0.6 0.8 1.0
pca

0.45
0.55
0.65
0.75

M
LU

 o
n

FC
T

(e) PCA (ρ∗pca = 50
54
)

0 2 4 6 8 10
re

0.60
0.65
0.70
0.75

M
LU

 o
n

FC
T

(f) RE (ρ∗re = 10)

0.0 0.2 0.4 0.6 0.8 1.0
ua

0.80

0.90

1.00

M
LU

 o
n

GS
AD

(g) UA (ρ∗ua = 1.0)

0.0 0.2 0.4 0.6 0.8 1.0
rd

0.80

0.90

1.00
M

LU
 o

n
GS

AD

(h) RD (ρ∗rd = 0.99)

0.0 0.5 1.0 1.5 2.0
ri

0.80

0.90

1.00

M
LU

 o
n

GS
AD

(i) RI (ρ∗ri = 2.0)

0.0 0.2 0.4 0.6 0.8 1.0
cd

0.40
0.60
0.80
1.00

M
LU

 o
n

GS
AD

(j) CD (ρ∗cd = 120
128

)

0.0 0.2 0.4 0.6 0.8 1.0
pca

0.70
0.80
0.90
1.00

M
LU

 o
n

GS
AD

(k) PCA (ρ∗pca = 120
128

)

0 2 4 6 8 10
re

0.80

0.90

1.00

M
LU

 o
n

GS
AD

(l) RE (ρ∗re = 10)

Fig. 3. The MLU on FCT shown in (a)-(f) and GSAD shown in (g)-(l) The
ρ∗ua, ρ

∗
rd, ρ

∗
ri, ρ

∗
cd, ρ

∗
pca and ρ∗re are the maximum values used for each parameter.

and each baseline method using HQR [10] as VPK, marked with a "(LR)" suf-
fix. We omit the baseline methods using M-Scheme [25] as VPK because their
absolute MLU difference is at most 0.004. Second, for MLU measured by SVM,
we draw one curve marked "SVM" in Figure 3. This curve with an error bar
represents the mean and standard deviation (std) of the MLU of all methods,
including baseline methods using both VPK versions and our method. The std
is at most 0.003 in all cases.

Why are the MLU curves close? This is due to the small constraint of
γ = 0.01. Since Q′ from different watermarking methods is computed from the
same dataset Q, the MLU of different Q′ are almost identical. Thus, when these
Q′ undergo the same attack, they exhibit similar MLU curves.

What did we learn from the MLU curves? The MLU of the attacked
watermarked dataset decreases with stronger attacks. This means an attacker
cannot indefinitely increase the strength of attack to remove a watermark, be-
cause a stronger attack will reduce more MLU, which causes more damage to
the resale value of the dataset. Since all watermarking methods have similar
MLUs, the method with the slowest AUC drop as attack strength increases of-
fers the best protection. Our method provides the best protection, because its
AUC drops the slowest in Figure 2.

PKF Watermarking for Numerical Tabular Datasets 15

8 Conclusion

In this paper, we propose a novel primary key free watermarking method for tab-
ular datasets. Different from many existing watermarking methods, our method
does not use a primary key to embed and detect watermarks. This makes it par-
ticularly suitable for watermarking tabular datasets used for machine learning,
because such datasets often do not come with a primary key and an existing pri-
mary key can be easily modified without degrading the machine learning utility
of the dataset. As demonstrated by extensive experiments, our method achieves
outstanding robustness against many watermark-removing attacks, which pro-
vides strong protection on watermarked datasets.

References

1. Abdi, H., Williams, L.J.: Principal component analysis. Computational Statistics
2, 433–459 (2010)

2. Agrawal, R., Haas, P.J., Kiernan, J.: Watermarking relational data: Framework,
algorithms and analysis. The VLDB Journal 12, 157–169 (2003)

3. Agrawal, R., Kiernan, J.: Watermarking relational databases. In: VLDB. pp. 155–
166 (2002)

4. Anand, A., Singh, A.K.: Watermarking techniques for medical data authentication:
A survey. Multimedia Tools and Applications 80, 165–197 (2021)

5. Bhattacharya, S., Cortesi, A.: A distortion free watermark framework for relational
databases. In: ICSOFT. pp. 229–234 (2009)

6. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine
learning algorithms. Pattern Recognition 30, 1145–1159 (1997)

7. Das, P., Manna, A., Ghoshal, S.: Gas sensor drift compensation by ensemble of
classifiers using extreme learning machine. In: ICSGE. pp. 197–201 (2020)

8. Even, A., Shankaranarayanan, G., Berger, P.D.: Economics-driven data manage-
ment: An application to the design of tabular data sets. IEEE TKDE 19, 818–831
(2007)

9. Gort, M.L.P., Díaz, E.A., Uribe, C.F.: A highly-reliable virtual primary key scheme
for relational database watermarking techniques. In: CSCI. pp. 55–60 (2017)

10. Gort, M.L.P., Feregrino-Uribe, C., Cortesi, A., Fernández-Peña, F.: Hqr-scheme: A
high quality and resilient virtual primary key generation approach for watermark-
ing relational data. Expert Systems with Applications 138, 795–825 (2019)

11. Gort, M.L.P., Feregrino-Uribe, C., Cortesi, A., Fernández-Pena, F.: A double frag-
mentation approach for improving virtual primary key-based watermark synchro-
nization. IEEE Access 8, 504–516 (2020)

12. Gupta, G., Pieprzyk, J.: Database relation watermarking resilient against sec-
ondary watermarking attacks. In: ICISS. pp. 222–236 (2009)

13. Hashim, H.: Hybrid warehouse model and solutions for climate data analysis. Jour-
nal of Computer and Communications 8, 75–98 (2020)

14. Hu, D., Wang, Q., Yan, S., Liu, X., Li, M., Zheng, S.: Reversible database water-
marking based on order-preserving encryption for data sharing. ACM Transactions
on Database Systems 48, 1–25 (2023)

15. Hu, D., Zhao, D., Zheng, S.: A new robust approach for reversible database water-
marking with distortion control. IEEE TKDE 31, 1024–1037 (2018)

16 X. Che et al.

16. Hülsmann, J., Traub, J., Markl, V.: Demand-based sensor data gathering with
multi-query optimization. In: VLDB. vol. 13, pp. 2801–2804 (2020)

17. Iftikhar, S., Kamran, M., Anwar, Z.: Rrw—a robust and reversible watermarking
technique for relational data. IEEE TKDE 27, 1132–1145 (2014)

18. İşler, D., Cabana, E., Garcia-Recuero, A., Koutrika, G., Laoutaris, N.: Fre-
qywm: Frequency watermarking for the new data economy. arXiv preprint
arXiv:2312.16547 (2023)

19. Kamran, M., Farooq, M.: An information-preserving watermarking scheme for right
protection of emr systems. IEEE TKDE 24, 1950–1962 (2011)

20. Kamran, M., Farooq, M.: A formal usability constraints model for watermarking
of outsourced datasets. IEEE TIFS 8, 1061–1072 (2013)

21. Kamran, M., Farooq, M.: A comprehensive survey of watermarking relational
databases research. arXiv preprint arXiv:1801.08271 (2018)

22. Kumar, S., Singh, B.K., Yadav, M.: A recent survey on multimedia and database
watermarking. Multimedia Tools and Applications 79, 149–197 (2020)

23. Kwak, C., Clayton-Matthews, A.: Multinomial logistic regression. Nursing research
51, 404–410 (2002)

24. Li, Q., Wang, X., Pei, Q., Lam, K.Y., Zhang, N., Dong, M., Leung, V.C.: Database
watermarking algorithm based on decision tree shift correction. IEEE Internet of
Things Journal 9, 24373–24387 (2022)

25. Li, Y., Swarup, V., Jajodia, S.: Constructing a virtual primary key for finger-
printing relational data. In: Proceedings of the ACM Workshop on Digital Rights
Management. pp. 133–141 (2003)

26. Liu, Q., Xian, H., Zhang, J., Liu, K.: A random reversible watermarking scheme
for relational data. In: SecureComm. pp. 413–430 (2022)

27. Lomb, N.R.: Least-squares frequency analysis of unequally spaced data. Astro-
physics and Space Science 39, 447–462 (1976)

28. Podilchuk, C.I., Delp, E.J.: Digital watermarking: Algorithms and applications.
IEEE Signal Processing Magazine 18, 33–46 (2001)

29. Rani, S., Halder, R.: Comparative analysis of relational database watermarking
techniques: An empirical study. IEEE Access 10, 970–989 (2022)

30. Ren, Z., Fang, H., Zhang, J., Ma, Z., Lin, R., Zhang, W., Yu, N.: A robust database
watermarking scheme that preserves statistical characteristics. IEEE TKDE (2023)

31. Šarčević, T., Mayer, R., Rauber, A.: Adaptive attacks and targeted fingerprinting
of relational data. In: ICBD. pp. 5792–5801 (2022)

32. Sebé, F., Domingo-Ferrer, J., Castella-Roca, J.: Watermarking numerical data
in the presence of noise. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 14, 495–508 (2006)

33. Sebé, F., Domingo-Ferrer, J., Solanas, A.: Noise-robust watermarking for numerical
datasets. Modeling Decisions for Artificial Intelligence pp. 134–143 (2005)

34. Shehab, M., Bertino, E., Ghafoor, A.: Watermarking relational databases using
optimization-based techniques. IEEE TKDE 20, 116–129 (2007)

35. Sion, R., Atallah, M., Prabhakar, S.: Rights protection for relational data. In:
SIGMOD. pp. 98–109 (2003)

36. VanderPlas, J.T.: Understanding the lomb–scargle periodogram. The Astrophysical
Journal Supplement Series 236, 1–16 (2018)

37. Wang, C., Li, Y.: A copyright authentication method balancing watermark robust-
ness and data distortion. In: CSCWD. pp. 1178–1183 (2023)

38. Wang, Z., Xue, X.: Multi-class support vector machine. Support Vector Machines
Applications pp. 23–48 (2014)

