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ABSTRACT 

Detecting topics from Web data attracts increasing atten­
tion in recent years. Most previous works on topic detec­
tion mainly focus on the data from single medium, however, 
the rich and complementary information carried by multi­
ple media can be used to effectively enhance the topic de­
tection performance. In this paper, we propose a flexible 
data fusion framework to detect topics that simultaneously 
exist in different mediums. The framework is based on a 
multi-modality graph (MMG), which is obtained by fusing 
two single-modality graphs together: a text graph and a vi­
sual graph. Each node of MMG represents a multi-modal data 
and the edge weight between two nodes jointly measures their 
content and upload-time similarities. Since the data about 
the same topic often have similar content and are usually up­
loaded in a similar period of time, they would naturally form a 
dense (namely, strongly connected) subgraph in MMG. Such 
dense subgraph is robust to noise and can be efficiently de­
tected by pair-wise clustering methods. The experimental re­
sults on single-medium and cross-media datasets demonstrate 
the flexibility and effectiveness of our method. 

Index Terms- Topic detection, fusion, cross-media, 
multi-modality, graph 

1. INTRODUCTION 

With the rapid development of Internet, the huge amount 
of information is delivered by diversified types of mediums, 
such as News article, News video, Web video, Microblog, etc. 
Compared with the relatively limited intrinsic information ca­
pacity of a single medium, the complementary cross-media 
information delivered by multiple mediums is much richer. 
Moreover, cross-media information often has a broader ac­
ceptance group and can reflect social realities from more as­
pects. Therefore, it would be interesting and beneficial to 
jointly detect topics from the multi-modal data in different 
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Fig. 1. A toy example of cross-media topics. 

mediums. As it is shown in Fig. 1, data in different medi­
ums generally involve multiple modalities, such as text, im­
age, video and audio. Each data of a certain medium may 
contain single or multiple modalities and the data structure of 
the same modality varies a lot among different mediums. 

A common solution to detect topics from the multi-modal 
data is to robustly fuse them together, which however is a 
difficult task in the scenario of cross-media topic detection. 
Firstly, the noise degree and length of text data in different 
mediums vary significantly, leading to the non-uniformity of 
text data. Secondly, the data structures of different mediums 
are often incomplete, since every single medium generally 
does not contain all the potential modalities at the same time. 
Thirdly, the granularity (i. e. time duration) of different topics 
varies much, which is a conunon problem in topic detection. 

1.1. Related Work 

The task of Topic Detection and Tracking (TDT) [1] has 
been studied for decades and many effective TDT meth­
ods [2] [3] [4] [5] have been developed to deal with News 
articles and News videos. Anaya-Sanchez et al. [3] introduce 
a clustering algorithm to discover and describe the topics in 
text collections. Pan et al. [4] propose a 3S-LDA model which 
combines the Latent Dirichlet Allocation (LDA) model with 
temporal and spatial clustering for topic detection. Although 
performing well on the professionally organized data, these 
methods are not suitable for the less structured and more com­
plex data from various mediums, which is generally made by 
non-professional web users. Some other works [6] [7] [8] de­
tect topics on Web video data. The bipartite graph method [6] 
uses the correlation between Web videos and their keywords 
for co-clustering, which however cannot utilize multiple fea-
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Fig. 2. The flow chart of our method. Please refer to the color pdf for a better view. 

tures. The salient trajectory method proposed by Cao et al. [7] 
builds the tag and visual information into a topic evolution 
link graph for topic detection. The tag group method pro­
posed by Chen et al. [8] fuses the dense-bursty tag groups 
with near-duplicate key frames to efficiently detect Web video 
topics; they also use the hot queries of search engines to iden­
tify the hot topics. However, both Cao's and Chen's meth­
ods are limited by their strong reliance on video tags, which 
may be noisy or unavailable in some mediums. Moreover, 
their hard quantization strategies in dealing with the upload 
time would inevitably lose some accuracy. In sum, most of 
the above mentioned methods are not suitable to sufficiently 
utilize the rich cross-media information that can effectively 
improve the topic detection performance. 

1.2. Our Method 

In this paper, we propose a flexible multi-modality fusion 
framework, which robustly fuses multi-modal information in 
different mediums to simultaneously detect topics in both sin­
gle and multiple mediums. Fig. 2 shows the framework of 
our method, and it consists of two fusion stages. The first 
one is a cross-media text fusion stage, which utilizes the La­
tent Dirichlet Allocation (LDA) model [9] to learn descrip­
tive latent topics from the non-uniform text data in different 
mediums. The second one is a multi-modality graph (MMG) 
fusion stage. It initially utilizes the time-decay coefficient and 
the Jaccard similarity to build two single-modality graphs for 
text and video modalities. The time-decay coefficient uses 
the upload-time interval of two data to estimate their proba­
bility of being about the same topic. The Jaccard similarity is 
widely used by many applications [10] [11] to measure the set 
similarity; here it is used to measure the consistency of two 
nearest neighborhoods, which enables us to compare the inho­
mogeneous feature similarities of different modalities. Then, 
the two graphs are fused by an efficient merging process to 
obtain the multi-modality graph (MMG), where each graph 
node represents a data and the edge weight between two nodes 
embodies the joint similarities of their contents and upload 
times. Since data about the same topic always contain similar 
contents and are often uploaded in the same period of time, 
they would naturally form a dense subgraph in MMG, which 
can be efficiently detected by the pair-wise clustering method 

of graph shift [12] . In summary, the merits of our method are: 
1) The LDA-based text fusion stage effectively alleviates 

the influence of the noisy and non-uniform text data in differ­
ent mediums. Moreover, simultaneously learning the latent 
topics from all the text data in different mediums is able to 
utilize the cross-media information more sufficiently. Such 
latent topics generally have stronger descriptive power than 
other text features, since they are more related to real topics. 

2) The MMG fusion stage properly fuses the inhomoge­
neous text and video similarities into one graph, so that the 
multi-modal data about the same topic would form a dense 
subgraph, which is highly robust to noise and could be effi­
ciently detected. Moreover, the flexibly defined graph nodes 
in MMG are not required to have the same number of poten­
tial modalities, which enables us to simultaneously detect the 
topics from various multi-modal data of both single or multi­
ple mediums. 

3) The time-decay coefficient smoothly models the topic 
granularity and embeds the time information in the MMG, 
which effectively reduces the accuracy loss caused by the hard 
time quantization strategies. 

2. ALGORITHM 

This section first introduces the two proposed fusion stages, 
then illustrates how to use the graph shift method [12] to de­
tect topics from the multi-modality graph (MMG). Data from 
different mediums typically involve the potential modalities 
of text, image, video, audio, etc. Our method mainly focuses 
on text (denoted by T) and video (denoted by V), which are 
widely used by many topic detection methods. A multi-modal 
data is denoted by di = (dr, dy), where dr and dy represent 
the data in text and video modalities respectively. For certain 
single-modality mediums that do not completely contain both 
the text and video modalities, either dr or dy would be null. 

2.1. Cross-media Text Fusion 

Text data from different mediums usually have quite differ­
ent text length and are sometimes noisy. For example, user­
provided video annotations are always short, and usually con­
tain a few key words with a relatively high degree of noise; 
however, the News articles often have long text length with 
relatively low noise degree. Although the tf-idf histogram 



and the key-word group can be proper text features for cer­
tain kind of text data, they are not able to effectively handle 
all kinds of text data in different mediums at the same time. 

We propose to extract text feature from the text data in 
multiple mediums by the LDA model, which is able to ro­
bustly learn the latent topics from noisy and non-uniform text 
data. We describe the text data dt by the normalized distri­
bution of latent topics in Eqn.l, where Pik is the normalized 
probability of dt over the k-th latent topic and C is the total 
number of latent topics. 

(1) 

In the scenario of cross-media topic detection, although the 
latent topics learned by LDA are different from real topics, 
their semantics are, to some extent, related to each other. 
Therefore, using the distribution of latent topics as text feature 
is able to describe the real topics of text data more accurately. 
The latent topics can also be learned from the text data of 
single medium. However, simultaneously learning them from 
multiple mediums is a natural text fusion process, which fur­
ther enhances their descriptive power by utilizing the cross­
media information. 

2.2. Multi-modality Graph Fusion 

As it is shown in Fig. 2, we first build two independent single­
modality graphs: the text graph (denoted by GT) and the 
video graph (denoted by GV). Then, the single-modality 
graphs are merged into a multi-modality graph (MMG) (de­
noted by G), in which the topics would naturally form dense 
subgraphs. The key technique is to transform the incompa­
rable text similarities and video similarities into the compa­
rable Jaccard similarities, which makes the graph fusion pos­
sible. Another effective technique is the time-decay coeffi­
cient, which alleviates the over-split and over-merge of topics 
by smoothly embedding time information in the edge weights 
of both GT and GV. For convenience, we assume that the 
connection less graph nodes are connected by zero-weighted 
edges, so all graphs can be regarded as fully connected. 

Given two multi-modal data di and dj, the time-decay 
coefficient aij smoothly measures their probability of being 
about the same topic by the interval between their upload 
times. It is defined by Eqn.2, where (3 is a positive scale pa­
rameter to control the rate of decay, D. is a small fixed quanti­
zation factor and ti,tj are the upload time of di and dj. Note 
that l·J denotes the round down operation. Apparently, when 
the time intervallti - tj I increases, the time-decay coefficient 
decreases exponentially, which further indicates that di and 
dj are less likely to be about the same topic. 

(2) 

The text graph is denoted by GT 
= ({ nf}, {W&}), where 

each node nt corresponds to a text data dt and the edge 
weight W& is calculated by three steps. Firstly, we use dot 

product as similarity to find the k-nearest neighbors NF (k), 
NT(k) of dt and dJ respectively. Then, the Jaccard sim­

ilarity ffj is calculated by Eqn.3. Finally, the edge weight 

W& is obtained by EqnA, which further incorporates the time­
decay coefficient aij (see Eqn.2) with the corresponding Jac­
card similarity ffj (see Eqn.3). 

T INF(k) n NT(k)1 
J = -=---"=_-

'J INF(k) U NT(k)1 
(3) 

(4) 

The video graph G v = ({ nY}, { w;;}) is constructed in 

a similar way. Each node nY corresponds to a video data dy 
and the edge weight wi; is calculated by Eqn.6, where aij is 

the same time-decay coefficient in Eqn.2 and Jij is the Jac­

card similarity between dy and dj (see Eqn.5). When calcu­

lating the k-nearest video neighbors of Nr (k) and NJ (k), 
we evaluate the similarity between videos by the number of 
their near duplicate keyframes (NDK). Note that the number 
of nodes in GV and GT are possibly not equal to each other, 
since some data are from the single-modality mediums, which 
do not fully involve both the text and video modalities. 

(5) 

(6) 

After obtaining the text graph GT and the video graph 
GV, we fuse them into the multi-modality graph (MMG) G = 

({ nil, {Wij}), where the node set is {ni} = {nf} U {nil 
and the edge weight Wij is obtained by Eqn.7. 

(7) 

In this way, the single-modality nodes nt and nY, which 
correspond to the text and video modalities of the same data 
di, are fused into one MMG node ni. Other single-modality 
nodes, which correspond to the data from single-modality 
mediums, are directly transformed to MMG nodes without 
fusion. All nodes in MMG are treated equally. For the fusion 
of edge weights W& and wi;, although the dot-product simi­
larity of text data is not directly comparable with the NDK­
based similarity of video data, the corresponding Jaccard sim­
ilarities are comparable, since both of them reflect the consis­
tency of two k-nearest neighborhood. Considering that there 
is no prior about the relative importance of each modality, 
a proper solution is to treat all modalities equally by simply 
summing up the edge weights (see Eqn.7). Apparently, this 
fusion framework of MMG is flexible enough to robustly in­
corporate the multi-modal data in different mediums. 

In short, the edge weights { Wij} of MMG jointly evaluate 
both the upload time similarities and the content similarities 
of multi-modal data { di}. Since the data about the same topic 



are generally similar with each other in both content and up­
load time, the corresponding MMG nodes would be strongly 
connected (i. e. large edge weight) with each other and natu­
rally form a dense subgraph. Such dense subgraph is a topic­
sensitive pattern, which is quite robust to noise and can be 
efficiently detected by pair-wise clustering methods. 

2.3. Topic Detection on MMG 

We use the pair-wise clustering method of graph shift 
(GS) [12] to detect the dense subgraphs (i. e. topics) on MMG. 
The input of the GS method is the symmetric adjacency ma­
trix A of MMG, whose element aij E A equals to the MMG 
edge weight Wij' A subgraph of MMG is represented by a 
probabilistic cluster x E 6, m, where 6, m = {xix E Rm, x � 
0, Ixil = I} and m is the total number of graph nodes in 
MMG. In fact, x is a unit mapping vector, which maps a clus­
ter of graph nodes to the standard simplex Rm. The i-th bin of 
x is denoted by Xi, which is the probability that the subgraph 
x contains the MMG node ni. Particularly, Xi = ° means 
that ni is not contained by subgraph x. The GS method mea­
sures the average connection strength of subgraph x by g(x) 
in Eqn.8 and efficiently finds all the local maximums {x*} 
of g(x) (see Eqn.9). Each local maximum indicates a dense 
subgraph of MMG, which is defined as a topic in our method. 

g(x) = xT Ax 

x* = max g(x), s.t. x E 6,m 
x 

3. EXPERIMENT 

(8) 

(9) 

In this section, we compare the topic detection performances 
of the proposed MMG method with the salient trajectory 
method (ST) [7] and the tag group method (TG) [8] . For 
MMG, the NDKs are extracted by the method proposed 
in [13] and the latent topics are generated by the Topic Mod­
eling Toolbox published in [14] . All the experiments are con­
ducted on a common PC with Core i-5 CPU and 12 GB mem­
ory. 

Two multi-modality datasets are used. The "core dataset" 
of MCG-WEBV [15] is built with the "Most Viewed " videos 
(along with surrounding text) on YouTube from Dec 2008 to 
Feb 2009. It contains 3,282 Web videos and 73 manually an­
notated ground truth topics, whose average topic-duration is 
42.2 days. Since MCG-WEBV contains only one medium 
(i. e. Web video on Youtube), it is not sufficient to analyze the 
cross-media topic detection performance of MMG. Therefore, 
we build a cross-media dataset YKS by crawling Web videos 
and News articles from YouKu I and Sina 2, respectively. YKS 
consists of 2,131 "hot " Web videos and 7,325 News articles 
from May 2012 to June 2012. Its ground truth contains 20 

I http://www.youku.coml 
2http://news.sina.com.cn/ 

pure Web video topics, 225 pure News article topics and 73 
hybrid topics which involve both the two mediums. The aver­
age topic-duration is 13.0 days. 

We adopt the same performance evaluation methods as [7] 
and [8] . The Precision and Recall are defined by Eqn.lO, 
where ED is the data set of a detected topic, ET is the data 
set of the ground truth topic best matched with ED, Ee is the 
set of correctly detected data in ED. After obtaining the Pre­

cision and Recall for each topic, we calculate the F-Measure 

by Eqn.ll, which is a comprehensive evaluation on both Pre­

cision and Recall. Then, we evaluate the average detection 
performances by the same strategy as ST, which sort all the 
topics by their F-Measure and calculate the average Preci­

sion, Recall and F-Measure of the top-10 detected topics. We 
also adopt the CP measurement proposed in [8] to evaluate 
the percentage of correctly detected topics, whose F-Measure 

is bigger than 0.5. CP is defined by Eqn.12, where N DT is 
the total number of detected topics and NCDT is the number 
of correctly detected topics. 

P . .  I Eel reczswn = 
I ED I 

I Eel Recall = 
I ET I 

F = 
2 * Precision * Recall 

Precision + Recall 

CP= 
NCDT 
NDT 

3.1. Parameter Analysis 

(10) 

(11) 

(12) 

This section analyzes the influences of two parameters on the 
performance of MMG: the number of latent topics C in Eqn.l 
and the scale parameter (3 of the time-decay coefficient (see 
Eqn.2). The number of nearest neighbors k (see Eqn.3 and 
Eqn.5) and the quantization factor � (see Eqn.2) do not have 
so much influences. Therefore they are empirically set as k = 
30, � = 3 for all experiments. 
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Fig. 3. The influence of C on the average F-Measure of top-
10 detected topics in different datasets. 

The number of latent topics C mainly affects the descrip­
tive power of text feature. Fig.3 shows the influence of C 
on the average F-Measure performance of MMG. The aver­
age F-Measure first increases with the growth of C, which is 
attributed to the increasing descriptive power of latent topic 



distribution. Then, it meets an upper-bound when C becomes 
too large, which may be due to the bottleneck of the intrinsic 
descriptive power of the latent topic. We choose the optimal 
value C = 200 for both MCG-WEBV and YKS. 

The scale parameter (3 controls the decaying rate of the 
time-decay coefficient aij in Eqn.2, which affects the average 
granularity of detected topics. A small value of (3 strength­
ens the edge weights between MMG nodes, which increases 
the chance of the positive nodes from large granularity top­
ics to form a dense subgraph. However, this may also bring 
some noise to small granularity topics, since the edge weights 
between some positive and negative nodes are also strength­
ened. On the contrary, a big value of (3 weakens the MMG 
edge weights, which favors small granularity topics, however, 
may lose some positive nodes of large granularity topics. This 
phenomenon is shown in FigA, where the average granular­
ity of top-20 detected topics monotonously decreases with the 
growth of (3. Table. 1 shows the influence of (3 on the average 
Precision, Recall and F-Measure of MMG on two datasets. 
We can see that the optimal value for MCG-WEBV and YKS 
are (3 = 0.01 and (3 = 0.1 respectively. Note that the average 
topic granularity of MCG-WEBV is larger than YKS, so its 
optimal value of (3 is smaller. 

The Influence of p on Topic Granularity 

Fig. 4. The influence of (3 on the average granularity of top-
20 detected topics on MCG-WEBY. Note that the x-axis is 
plotted in log scale. 

Table 1. The influence of (3 on the average topic detection 
performances of top-10 detected topics. (C = 200). 

Dataset (3 Precision Recall F-Measure 

0.01 0.9366 0.9418 0.9367 

MCG-WEBV 0.1 0.8797 0.8674 0.8701 
1 0.8602 0.8526 0.8475 

0.01 0.9561 0.9103 0.9305 
YKS 0.1 0.9750 0.9358 0.9517 

1 0.9124 0.9408 0.9199 

3.2. Performance Evaluation on MCG-WEBV 

We conduct our experiment on the "core dataset " of MCG­
WEBV [15] to analyze the effectiveness of MMG on multi­
modal data from the single-medium of Web video. For MMG, 
we use the optimal parameter values: (3 = 0.01, C = 200. 

The salient trajectory based method of ST [7] is regarded as 
baseline; the tag group based method of TG [8] is compared 
as well. Since the published MCG-WEBV dataset has been 
used by both ST and TG, we compare with their best reported 
performances. Fig. 5 shows comparative results on the aver­
age Precision, Recall and F-Measure of top-10 detected top­
ics. We can see that both TG and MMG perform much bet­
ter than ST. Besides, the Precision and Recall of MMG are 
more balanced than TG, hence it achieves a slightly better F­

Measure performance. We further analyze the effectiveness 
of MMG under the measurement of C P which is proposed 
by TG. As it is shown in Table 2, the CP performance of 
MMG significantly outperforms TG; this may be attributed 
to the robustness and topic-sensitive property of the naturally 
formed dense subgraphs in MMG. 

1 
0.9 
0.8 
0.7 
0.6 

Average Precision Average Recall Average F-Measure 
Fig. 5. The average performances evaluated on the top-10 
detected topics on MCG-WEBY. 

Table 2. The CP performances on MCG-WEBV 
Method NDT NCDT CP 

TG 83 31 37.35% 
MMG 33 32 96.97% 

3.3. Performance Evaluation on YKS 

In this section, we analyze the performance of MMG on YKS, 
which consists of multi-modal data from both the mediums of 
News article and Web video. We compare with TG, whose 
source code is kindly provided by T. Chen [8]. Considering 
that TG is only able to use the Web video data in YKS, we 
fairly compare with it by running MMG on exactly the same 
Web video data set. Furthermore, we run MMG on the full 
cross-media data set of YKS to prove the advantage of cross­
media topic detection. For clarity, we refer to the Web video 
version of our method as MMG-Y. All the three methods are 
evaluated under the same ground truth of YKS. The results 
reported are the best performances of the three approaches. 
The optimal parameters are: for TG, e = 0.2, (31 = -0.25 
and 'f/ = 0.43 (e, (31, 'f/ are the parameters of TG [8]); for 
MMG-V, (3 = 1, C = 200; for MMG, (3 = 0.1, C = 200. 

Fig. 6 shows the average performances of TG, MMG-V 
and MMG. We can see that MMG-V performs better than TG 
in all aspects. This proves the effectiveness of MMG-V in 
dealing with pure Web video data. Moreover, MMG performs 
better than both TG and MMG-V, which demonstrates the ef­
fectiveness of the complementary cross-media information in 
improving the topic detection performance. 
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Fig. 6. The average performances evaluated on the top-10 
detected topics on YKS. 

Table 3 shows that the C P of all the methods on YKS 
are 100%. However, the number of correctly detected top­
ics (i. e. NCDT) differs significantly, where the number of 
topics correctly detected by MMG is the largest. We further 
analyze this phenomenon in Fig. 7, where the correctly de­
tected topics are divided into three groups according to their 
related modalities. Apparently, MMG-V detects more topics 
than TG in both the groups of "pure video topics " and "hybrid 
topics ". This proves the effectiveness of our method in deal­
ing with the multi-modal data from the single medium of Web 
video. Moreover, the MMG method not only detects more 
video-related topics than MMG-V, but also detects 69 pure 
News article topics, which shows the significant performance 
enhancement brought by the complementary cross-media in­
formation and the effectiveness of MMG in dealing with the 
incomplete multi-modal data from different mediums. 

Table 3. The C P performances on YKS. 
Method NDT NCDT CP 

TG 11 11 100% 
MMG-V 23 23 100% 

MMG 115 115 100% 

.. Pure Web Video Topics" Pure News Articles Topics 
III Hybrid Topics .. Not Detected 

Fig. 7. Analysis on the types of detected topics on YKS. 

4. CONCLUSION 

We propose a multi-modality graph fusion framework to ef­
fectively detect topics from both single-medium and multi­
media data sources. Such framework is highly flexible and 
can be efficiently extended to incorporate other modalities of 
data from various mediums. In our future work, we will in­
vestigate online method for cross-media topic detection. 
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