
FAST COMMON VISUAL PATTERN DETECTION 

VIA RADIATE GEOMETRIC MODEL 

 

Lingyang Chu
1,2
,    Shuqiang Jiang

1,2
,    Qingming Huang

1,2,3
 

1
Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), China 

2
Institute of Computing Technology, CAS, Beijing, 100190, China 

3
Graduate University of Chinese Academy of Sciences, Beijing 100049, China  

{lychu, sqjiang, qmhuang}@jdl.ac.cn 

 
Abstract 

In this paper, we propose a novel method to implement fast 

detection of Common Visual Pattern (CVP). The purpose of CVP 

detection is to find the correspondences between the common 

visual regions of two given partial duplicate images. There are two 

major components of the proposed method which guarantee the 

good performance. First, we establish the Radiate-Geometric-

Model (RGM). The RGM is represented by a set of radiate 

structures, and each structure is geometrically made up of a group 

of matched feature pairs. By utilizing the statistical information 

gained from the radiate structures, the RGM can not only quickly 

estimate the potential pairs of common regions but also organize 

the scale relationship between matched pairs into a compact form, 

hence increase the detection speed substantially. Second, we 

formulize the Radiate-Geometric-Model (RGM) into a graph 

optimization problem which could be solved by the method of 

graph-shift, thus make our algorithm capable of detecting the 

CVPs of all kinds of correspondences. Experimental results prove 

that the speed of our algorithm is at least 40 times faster than the 

state-of-the-art, while achieving a better detection performance at 

the same time. 

 

Index Terms— common visual pattern detection, Radiate-

Geometric-Model, graph-shift, partial duplicate image 

 
1. INTRODUCTION 

Given a pair of partial duplicate images, there exist several 

common regions that are visually similar with each other. These 

common regions, which are called Common Visual Patterns (CVPs) 

in this paper, share the same visual-geometric appearances as 

illustrated in Fig.1. The task of common visual pattern detection is 

to find out all the CVPs together with their correspondences. A fast 

and accurate CVP detection algorithm could be used in many 

applications such as near duplicate image retrieval, object 

detection and image tagging etc. 

There have been solutions trying to solve the CVP detection 

problem. Shapiro and Brady [1] proposed a spectral technique to 

find the correspondences between two sets of interest points. 

Leordeanu [2] proposed another spectral technique by optimizing a 

quadratic objective function. Caetano et al. [3] used markov 

random field to establish the correspondences between interest 

point sets. However, the challenges of image distortion and the 

complexity of CVP-correspondences remains to be a problem. 

Recently, Hairong Liu et al. [4] established a new algorithm which 

 
Fig. 1. An example of common visual pattern detection. The 

correspondence is many-to-many. 

 

is robust to these challenges. This method [4] firstly formulate the 

whole CVP detection problem into a graph optimization problem, 

and then solve it by the method of graph-shift [5] which aims to 

find all the local dense sub-graphs of a complete graph and is 

robust to outliers. However, the detecting speed of their method is 

relatively slow due to the necessity of scanning all the probable 

scale-ratios [4]. 
In this paper, we propose a fast common visual pattern 

detection method which is at least 40 times faster than [4] and 

achieves a better detection performance. The key to fast detection 

speed of our method is the RGM which is geometrically 

represented by a set of radiate structures (Fig. 2. (a)) and is 

mathematically represented by a set of weighted histograms(Fig. 2. 

(b)). In order to obtain this set of weighted histograms, we firstly 

detect all the matched pairs of feature points, such as SIFT features 

[6]. By considering each pair of feature points as the reference 

center, we can connect all the other feature points to the reference 

center to construct a radiate geometric structure. Then, the RGM is 

obtained by transforming each radiate geometric structure into a 

weighted histogram. 

The set of weighted histograms are then used to construct a 

complete graph whose nodes consist of the set of matched feature 

points and edge weights are updated by the statistical information 

extracted from the RGM. In this way, the CVP detection problem 

is transformed into a graph optimization problem which aims to 

find the sub dense-graphs of the complete graph and could be 

solved by the method of graph-shift [5]. 

This paper is organized as follows: the proposed algorithm of 

CVP detection is introduced in section 2. The experimental results 

are shown in section 3 and section 4 is the conclusion. 
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2. PROPOSED ALGORITHM 

In this section, the RGM together with its statistical property is 

firstly introduced in section 2.1. Then we give a detailed 

explanation on how to formulize the RGM into a graph 

optimization problem in section 2.2. At last, in section 2.3, how to 

solve the optimization problem by graph-shift is discussed. 

 

2.1. Radiate Geometric Model (RGM) 

 
(a) 

 
(b) 

Fig. 2. An illustration of radiate geometric structure. (a) is the 

geometrical form; (b) is the corresponding mathematical form. The 

solid lines indicate the relations of the structure and the dash lines 

indicate the matched points. The noisy lines are not drawn. 

 

As is shown in Fig. 2, at first, we coarsely match the local 

feature points, such as SIFT features [6], between the two partial 

duplicate images, the coarsely matched feature points are denoted 

as: 

( , '),i i iC P P i N= ∈                               (1) 

where N is the index set of all the matched feature points, and 

iC is called a match. Given a match
iC , a similarity score could be 

computed as: 

'( ) exp( ( , ) / )i i isim C feaDist feature feature δ= −     (2) 

where '( , )i ifeaDist feature feature is the distance of the two 

features and δ is a predefined scale parameter. 

For a pair of match ( , )i jC C , we define the scale ratio 

parameter as: 

( , ) / ( ', ')ij i j i js dist P P dist P P=                      (3) 

where ( , )i jdist P P is the pixel distance between iP and jP , for 

example, the pixel length of the solid segments in Fig. 2 (a) img1. 

Given a set of matches { | }iC i M∈ where M denotes the 

index of a set of points that lies in the same CVP, a property of the 

scale ratio parameter has been proved by [4]:  

Property1: If { | , ; }ijL s i j M i j= ∈ ≠ , then ( ) 0Lσ ≈  

The small standard deviation value of scale ratio parameter 

means that it stays stable for most of the valid matches in the same 

CVP. 

Now, we can use property1 to formulize the radiate geometric 

model. Given all the matches{ | }iC i N∀ ∈ and a single reference 

match ,kC k N∈ , we can obtain a set of scale ratio parameters:  

{ | , , }kiS s k N i N i k= ∈ ∀ ∈ ≠                      (4) 

which correspond to the pairs of solid lines as is shown in Fig. 2. 

(a). Then S is quantized by a predefined step γ to form a 

histogram khist  whose x-axis is the quantized scale ratio 

parameter and y-axis is the sum of ( )isim C for all 
iC whose 

corresponding scale ratio parameter 
kiS  belongs to the same bin 

(Fig. 2. (b)). The subscript k indicates that the 
khist uses 

kC as the 

reference match. At the same time, a weight 
kw  is assigned to the 

histogram 
k

hist  which is: 

max( ) / ( )k k kw hist mean hist=                    (5) 

This makes the couple of ( , )k khist w which is a weighted histogram. 

Obviously, we can obtain a set of weighted histograms, which is 

the mathematical form of our Radiate-Geometric-Model:  

{( , ) | }k kH hist w k N= ∈                          (6) 

According to property1, it would be easy for us to infer the 

following statistical property of H : 

Property2: For a weighted histogram ( , )k khist w with a 

large
kw , the corresponding reference match 

kC is more likely to 

lie in a CVP. And the matches that are assigned to the bin with 

max y-value are more likely to lie in the same CVP as the one that 

kC  lies in. On the contrary, for those histograms with a low
kw , 

the reference match 
kC is less likely to lie in a CVP and the 

information it carries is more likely to be noise. 

Explanation: According to property1, for a reference match 

kC that lies in a CVP, the scale ratio parameter 
kis  which  

corresponds to the couple of ( , ), ,k iC C i k M∈  would be stable, 

thus those valid matches are most likely to be assigned to the same 

bin of khist which makes the y-value of that bin very large. 

However, according to experiments, the noise matches are more 

likely to be randomly assigned to all the bins of 
khist . Considering 

the fact that the mean value stays the same for all
khist , the result 

of a large 
kw  is obvious. On the contrary, for a reference match 

that does not lie in a CVP, all the other matches tend to be 

randomly assigned to all the bins which is more likely to result in a 

small
kw . 

 

2.2. The Graph Model 

The mathematical definition of a graph is ( , , )G V E W  where 

V is the set of vertices, E is the set of edges and W is the set of 

edge weights. In our model, the vertex set V  consists of the 

matches { }iC and is simply defined as { | }iV C i N= ∀ ∈ ; the edge 

set E is defined as {( , ) | , , }i jE v v i j N i j= ∈ ≠ with the set of 

weights 0
{ }ijweight  initialized to zero. In the rest of this section, 

we will focus on how to use the statistical information extracted 

from the RGM to update the weight of each edge. The updating 

strategy consists of two parts:  

1) For each weighted histogram ( , )k khist w in RGM, we obtain 

the relationship between reference match and the other matches 
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which is represented by : { | }
kw

kk iR C C i Q→ ∈ , where kw is the 

weight of khist , kC is the reference match and Q denotes the 

index set of { }iC that are assigned to the bin whose corresponding 

y-value is the maximum in khist . 

2) For each relationship kR , we update the weight of graph 

edges by Equ. (7): 
1 , { };t t

ij ij kweight weight w i j k Q i j+ = + ∀ ∈ ≠∪               (7) 

where t

ijweight is the value of the graph edge weight at the t-th 

iteration. 

The graph is completely constructed after all the kR have been 

used to update the edge weight. For the set of valid matches that lie 

in the same CVP, the edge weights between each other would all 

be large. The reason for this phenomenon is that for the relation of 

: { | }
kw

kk iR C C i Q→ ∈  with a large
kw , the match set of 

{ | }iC i Q∈ has a very high probability to lie in the same CVP as 

the one that
kC lies in. This results in the fact that for every 

reference match 
k

C that lies in a CVP, it is most likely to collect 

the other valid matches into its set Qwith a high weight kw . In this 

way, the edge weights between valid matches would be updated 

many times by a set of large 
kw , thus become very large finally. 

These edges with large weights connect the valid matches into a 

dense sub-graph[5]. 

However, for those invalid matches that do not lie in any CVP, 

the situation is completely the opposite way which means that they 

are almost impossible to be part of any dense sub-graph. So the 

task of common visual pattern detection now equals to the 

optimization problem of finding the dense sub-graphs of 

graph ( , , )G V E W . This problem can be solved by the method of 

graph-shift [5]. In sub-section 2.3, we will discuss the graph-shift 

method and a tricky estimation procedure to do the initialization 

which saves a lot of computing time. 

 

2.3. The Graph-Shift Method 

There are two vital factors of the graph-shift algorithm: 1) the 

graph ( , , )G V E W ; 2) an initial vector X . The graph is pre-

constructed and the definition of vector X  is: : nX V → ∆ where 

1
{ : 0; 1}n nx R x x∆ = ∈ ≥ = [5], which is the mapping from vertex 

set V to the standard simplex nR , each point nx∈ ∆ is a 

probabilistic combination of vertices, which is called a 

probabilistic cluster [5]. Let 
ix denote the i-th component of 

vector nx∈ ∆  and the value of 
ix measures the probability that 

vertex
iv  be contained by the probabilistic cluster. The probability 

cluster nx∈ ∆ indicates a sub-graph of ( , , )G V E W , and a graph 

density function ( )g x is defined to measure the connection density 

between the vertices in nx∈ ∆ . 

In short, the method of graph-shift aims to find all * nx ∈ ∆  

that correspond to a local maximum *( )g x by an optimized 

iteration algorithm and the set of *{ }x indicate the set of dense sub-

graphs which are exactly what we need. 

The initialization strategy of nx∈ ∆  affects the computing 

time and the final result of graph-shift a lot. [4] uses all the vertices, 

as the init-value each for once. This wastes a lot of computing 

resources. However, we invent a little trick to estimate the init-

values which avoids the necessity of scanning the full set of init-

values. 

For the relation kR there is a related bin value that 

corresponds to the quantized scale-ratio parameter which has the 

maximum y-value in khist . Hence the kR should be modified to 

be ( , _ )k kR R Bin ID=� . Then we can use the _Bin ID to cluster the 

full set of { }kR
� into several subsets which are denoted as

_{ }k bin idR�  

and simply count the set of _{ | ; , { } }i k bin idC i k Q k Q R∈ ∈ �∪ into a 

probability cluster which is treated as an init-value nx∈ ∆ . 

This estimation trick effectively decreases the size of init-

value set. The good performance of the final detection result 

proves the rationality of this estimation method. 

 

3. EXPERIMENTS 

In this section, we mainly focus on the comparison of detection 

performance between our method and the method of [4]. There are 

two factors of performance to be considered: a) computing time 

which is in inverse proportion to detection speed; b) detection 

accuracy which is calculated from the number of valid matches and 

correct CVPs. 

The experiment is implemented on 408 pairs of near duplicate 

images which is a sub set of [7] (more illustrations of the data set 

and specified explanation of our method and experimental results 

is available at http://www.jdl.ac.cn/en/project/mrhomepage/FCVP 

D/FCVPD.html). We firstly run the two detection methods on each 

pair of the images, and then manually label the numerical 

evaluations of the two performance factors. Finally, for a clearer 

representation, we draw the comparing results for both factors in 

Fig. 4 and give the numerical results in Table. 1. 

Note that there is a very important scale parameter t which is 

scanned in the method of [4] and the scanning step t∆  is vital to 

their detection performance. For the fairness of comparison, we run 

their method for three times with the scanning step set to three 

typical values ( [0.2,0.5,0.8]t∆ = ) and compare our results with 

each one of them. 

Here is how to obtain the numerical evaluations of the two 

performance factors: 

 

a) Computing time: for each method, we record the time to 

complete the detection task on each single pair of images. 

The computing time for detecting the feature point 

matches is not considered for both methods. Let 

1( )time k  denote the computing time of our algorithm 

and 
2( )time k  for the method of [4], where the subscript 

k  indicates the k-th pair of the 408 near duplicate 

images. 

 

b) Detection accuracy: for the k-th pair of images, we 

manually label the number of valid matches (denoted 

by ( )im k ) and correct CVPs (denoted by ( )in k ). Then, 

we use the pair of [ ( ), ( )]
i i

m k n k to evaluate the 

performance of detection accuracy, where the subscript 

{ }1,2i∈  indicates the two compared methods (with 

1i = for our method and 2i = for the method of [4]). 
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Fig. 4. This is a result of our method. There are two pairs of 

“KFC” detected in the two partial duplicate images, hence the 

number of CVPs should be
1 2n = . The number of valid match 

obtained by counting the number of valid matched lines in the 

detection result is 1 20m = and the calculation time recorded by 

computer is 1 0.043sectime = . 

Fig. 4 gives an example of the numerical evaluation. After 

obtaining the numerical evaluations of the detection performance, 

we use Equ. 8 and 9 to compare the detection speed and accuracy 

of the two methods: 

           
1 2_ ( ) ( ) / ( )time ratio k time k time k=                        (8) 

1 1

2 2

( ) 1 ( ) 1
_ ( ) *

( ) 1 ( ) 1

m k n k
accuracy ratio k

m k n k

+ +
=

+ +
               (9) 

where _ ( )time ratio k <1 indicates our advantage of detection 

speed against [4] and _ ( )time ratio k >1 means the opposite. 

_ ( )accuracy ratio k >1 indicates our advantage of detection 

accuracy against [4] and _ ( )accuracy ratio k means the opposite. 

For the k-th pair of images, we firstly calculate the 

_ ( )time ratio k  and _ ( )accuracy ratio k  by Equ. 8 and 9, then use 

the Cartesian coordinates of Equ. 10 to draw one point in Fig. 5. 

(We draw the figure in the metric of
10log for a clearer 

representation) 

10 10[log ( _ ( )), log ( _ ( ))]time ratio k accuracy ratio k            (10) 

 
Fig. 5. The comparing result between our method and the method 

of [4] with [0.2 0.5 0.8]t∆ = . For a data set of 408 pair of images, 

there are 408 points for each kind of shape and 

408 3 1224× = points in all. 

As is shown in Fig. 5, each point corresponds to a pair of near 

duplicate images. According to Equ. 10, the x-coordinate shows 

the comparing result of computing time and the y-coordinate 

shows the comparing result of detection accuracy. We compare our 

method with the method of [4] whose parameter t∆  is set to three 

different values and the comparing results are represented by three 

kinds of shapes (red square, green delta and blue circle).  

The following results can be easily figured out from Fig. 5: 

a) Our method is at least 40 times faster than the method of [4]: 

considering all the 1224 points in Fig. 5, the fastest 

performance of [4] is achieved at the right most blue circle 

with 0.8t∆ = which has an x-coordinate value to be 

about
10log ( _ ) 1.6time ratio = − . This is equivalent to a 40-

times speed gain. 

b) Our method has achieved a better performance of detection 

accuracy: the best detection accuracy performance of [4] is 

achieved by 0.2t∆ = . However, as it is shown in the 

comparison plot of Fig. 5, the red squares indicates that the 

average accuracy of our method is still 1.975 times better  

according to Table. 1. 

 

Table. 1. This table gives the average time ratio and average 

accuracy ratio of the points in Fig. 5. (Not considering the factor of 

10log ). 

 
Our method 

_ _average time ratio  _ _average accuracy ratio  

0.2t∆ =  0.0033 1.9715 

0.5t∆ =  0.0082 3.2013 

0.8t∆ =  0.0131 5.6529 

The comparing results in Table. 1 also prove that our method is 

better in both speed and accuracy.  

 

4. CONCLUSION 

In this paper, we propose a Radiate-Geometric-Model (RGM) and 

a method to transform the RGM-based CVP detection problem into 

a graph optimization problem. Our method is at least 40 times 

faster than the state-of-the-art and achieves a better performance of 

detection accuracy. The large amount of speed gain is mostly due 

to the Radiate-Geometric-Model and the graph-shift algorithm 

ensures the robustness of our method. We are looking forward to 

developing this method into a similarity measurement which could 

be used to re-rank the results of image retrieval applications. 
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