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Abstract—A host of different KG embedding techniques have
emerged recently and have been empirically shown to be very
effective in accurately predicting missing facts in a KG, thus
improving its coverage and quality. Unfortunately, embedding
techniques can fall prey to adversarial data poisoning attack. In
this form of attack, facts may be added to or deleted from a KG,
called performing perturbations, that results in the manipulation
of the plausibility of target facts in a KG. While recent works
confirm this intuition, the attacks considered there ignore the risk
of exposure. Intuitively, an attack is of limited value if it is highly
likely to be caught, i.e., exposed. To address this, we introduce
a notion of the exposure risk and propose a novel problem of
attacking a KG by means of perturbations where the goal is to
maximize the manipulation of the target fact’s plausibility while
keeping the risk of exposure under a given budget. We design a
deep reinforcement learning-based framework, called RATA, that
learns to use low-risk perturbations without compromising on the
performance, i.e., manipulation of target fact plausibility. We test
the performance of RATA against recently proposed strategies
for KG attacks, on two different benchmark datasets and on
different kinds of target facts. Our experiments show that RATA
achieves state-of-the-art performance even while using a fraction
of the risk.

I. INTRODUCTION

An integral step in growing and maintaining a large KG is
to employ a knowledge completion model which when trained
on a set of true positive and true negative facts, can predict
other triples that are highly likely to be true and therefore can
be used to augment the KG. These training facts are often
obtained by means such as crowd sourcing [1], [2], automated
text mining [3], [4], etc.

Unfortunately, as has been demonstrated recently [5], [6],
knowledge graphs are susceptible to data poisoning attacks,
whereby an attacker can maliciously add facts, whose inclu-
sion in a KG may have the detrimental effect of manipulating
the plausibility score of other facts: facts with a low score
(and thus unlikely to be true) can have their score bumped up
and facts with a high score (thus highly likely true) can have
their scored lowered. A high quality KG is the cornerstone
for downstream applications that leverage the KG. Clearly,
such attacks can erode the quality of the KG and may have a
negative impact on downstream applications.

Facts that are added to the training set by a malicious
attacker, for manipulating the scores of facts and thus the
quality of a KG, are called perturbations. In this paper, we
are specifically interested in targeted data poisoning attack
[5]. In this attack, a specific target fact is chosen, and then
perturbations are added to the KG to manipulate the score of

the target fact to a low (or high) plausibility score. In this
way, an attacker can turn a true fact into a fake fact (or vice
versa), and she can further exploit this loophole to launch
serious attacks on downstream applications, such as hiding
accurate recommendations from recommendation systems, and
concealing valid answers in information searching systems and
question answering systems.

Existing targeted data poisoning attacks [6], [5] ignore the
risk of getting exposed during the attack. Being aware of and
mitigating the risk of exposure is an important aspect of a good
quality attack, and it has been considered for data poisoning
attacks in other domains [7], [8]. However, the previous works
on knowledge graph attacks ignore exposure risk completely.
In contrast, in this paper we aim to find a stealthy attack that
is hard to detect and hence represents a much greater threat
to the robustness of knowledge graphs.

Is it possible to conduct a stealthy targeted data poisoning
attack, while keeping the exposure risk low? In this paper, we
answer this affirmatively. While we formalize the notion of
risk in Section II, intuitively speaking, perturbations that add
facts with a higher plausibility score into a knowledge graph
are less risky than those that add facts with a lower plausibility
score, as determined by the completion model. By exploiting
the high non-linearity of the knowledge graph structure, we
find that it is possible to achieve a good attack performance
while selecting low risk perturbations.

To the best of our knowledge, we are the first to study risk
aware attacks on knowledge graphs. In Section II, we formally
introduce the novel problem of targeted KG data poisoning
attack under an exposure risk budget, as a constrained opti-
mization problem.

We then show that finding a sequence of perturbations can
be naturally modeled as Markov Decision Process (MDP).
We propose a solution framework based on reinforcement
learning (RL), leveraging the fact that RL algorithms using
policies such as Q-learning can efficiently solve MDPs [9].
Also to preserve the well-known non-linearity of the KG, we
use a deep non-linear neural network to learn the Q functions.
Lastly, due to the high number of entities and relations in a
KG, a naive approach of using an embedding of the entire
collection of facts as a state and a single perturbation as
an action, quickly becomes practically infeasible. To address
this bottleneck, we use a hierarchical Q-learning approach
that decomposes a single action into a three-step decision
making process. Once trained, our model, Risk called Aware



Targeted Attacker (RATA for short), can perform effective
attacks even under exposure risk constraints, unlike the risk
agnostic baselines.

To summarize, the major contributions of our paper are as
follows: (1) We introduce the novel problem of finding targeted
knowledge graph attack under an exposure risk constraint
(Section II). (2) We develop a principled framework for
attacks, based on hierarchical deep Q-learning, by making use
of the natural match between reinforcement learning and MDP.
Our attack approach, called RATA, succeeds in exploiting the
non-linear structure of the KG efficiently (Section III). (3)
Our experiments on large real world benchmark KG datasets,
demonstrate that RATA achieves good attack performance,
while staying within a given exposure risk budget (Section IV).

II. PROBLEM FORMULATION

In this section, we first define the notations that we use in
the paper, and then formulate our problem.

A knowledge graph G is a set of facts F represented as an
unweighted directed graph, where each vertex represents an
entity, and a directed edge connecting two vertices represents
the relationship between the two entities. We refer to a triple
f = (h, r, t), where h and t are the head and tail entity,
respectively, and r is the relationship from h to t, as a fact.
Two triples f1 = (h1, r1, t1) and f2 = (h2, r2, t2) are equal
iff they are equal component-wise. Clearly, there is a one-to-
one correspondence between a knowledge graph G and the
set of facts F that it represents. We thus, use these notions
interchangeably.

Denote by E the universe of all entities, by R the universe
of all relations, and by P = E ×R×E the set of all possible
triples. Clearly, every fact in F is a triple in P , so we have
F ⊆ P .

There is some unknown subset F ′ : F ⊂ F ′ ⊂ P of all
“true” facts, not all of which are present in the knowledge
graph. A completion model is trained on all facts in F and
then the trained model is used to identify whether a missing
fact f ∈ P\F could be in F ′. Based on this, a decision is made
as to whether f should be added to the KG, and the KG could
grow [10]. Specifically, the completion model first computes
the embeddings of all the entities and relationships in F , and
then uses these embeddings to predict the plausibility score of
every triple f ∈ P . A higher (lower) plausibility score means a
triple is more (resp., less) likely to be true. For triples in P \F ,
only the ones with high plausibility scores are regarded as facts
and added into F . We denote by s(·) : P → R the plausibility
score function that maps a triple f ∈ P to its plausibility score
s(f). An accurate score value s(f) is critical for accurately
identifying whether a missing fact f ∈ P \F is true and should
be included in F .

The plausibility score function is uniquely determined by
a completion model trained on F , and we denote it by
sF (·). If F is deliberately perturbed by adding some triples
carefully, the scoring function can be altered to manipulate
the plausibility score of facts in P \ F . This could prevent a
missing fact from being added into F , and attackers can exploit

this loophole to intentionally hide valuable facts from being
added into a knowledge graph [11]. Such a manipulation of the
plausibility score of a given target fact is called a targeted data
poisoning attack [5], which usually consists of a sequence of
perturbations. Here, a perturbation is the operation of adding
a selected triple d ∈ P \F into F . Two perturbations are said
to be the same if they are adding the same triple d ∈ P \ F
into F . Since each triple d ∈ P \ F uniquely corresponds to
a perturbation, a sequence of perturbations, denoted by D, is
uniquely determined by a partial permutation of the triples in
P \ F .

Data poisoning attack papers on normal graph have shown
that removing training samples is very easy to detect as
an attack [8], [12]. Thus we do not consider perturbations
corresponding to removing facts from F .

The target is chosen to be one of the facts which is not yet
part of the existing set of facts F . Denote by f∗ ∈ P \ F ,
a target fact to attack, by D, a set of perturbations where
f∗ /∈ D, by F ∪ D, the perturbed set of facts generated
by perturbing F with D. Let sF∪D(·) be the manipulated
plausibility score function determined by the same completion
model, but trained on the perturbed training data F ∪ D.
Without loss of generality and following previous work [5],
we only focus on reducing the plausibility score of f∗ after
adding D as perturbation, given by sF (f∗)− sF∪D(f∗).

The goal of our work is to conduct a stealthy targeted
data poisoning attack that significantly lowers the plausibility
score of a target fact while keeping the exposure risk low.
Depending on the triple d ∈ P chosen to be added into F ,
different perturbations have different risks of being detected.
We model the risk of perturbations by an exposure risk
function ρ(·) : P → R that maps a triple d ∈ P \F to the risk
score ρ(d) of adding d into F . A higher value of ρ(d) means
the perturbation d is easier to detect, i.e., the attacker will be
exposed more easily. For a sequence of perturbations denoted
by D, we extend the risk function to evaluate the exposure
risk of perturbing F with D, by ρ(D).

Next, we formally state our Risk Constrained Targeted Data
Poisoning (RC-TDP) problem.

Problem 1 (Risk Constrained Targeted Data Poisoning Prob-
lem). Given a knowledge graph in the form of set of facts F , a
score function s(·) given by a completion model, a target fact
f∗ ∈ P \F , an exposure risk function ρ(·), and a risk budget
%, the problem of risk constrained targeted data poisoning is
to find a sequence of perturbations D, where f∗ /∈ D, such
that D maximally manipulates the plausibility score of f∗,
while keeping the exposure risk bounded, i.e., ρ(D) ≤ %. More
precisely, the problem is to find:

argmax
D⊆P\F∧f∗ /∈D

sF (f
∗
)− sF∪D(f

∗
)

s.t. ρ(D) ≤ %
(1)

III. KNOWLEDGE GRAPH ATTACK

A general KG attack environment under a risk budget
constraint is presented in Section III-A. specific adjustments



we make to adapt the environment for our problem is in
Section III-B and our training algorithm is in III-C.

A. General Attack environment

State. S is the set of all states. At a given timestep l, the
corresponding state gl ∈ S corresponds to the set of facts
in KG at time l, denoted by Fl, and the remaining budget
available, %l. When l = 1, %l = % and F1 = F , the initial set
of facts contained in the original KG, prior to any attack. At
every timestep l, a new fact is fl added to Fl, changing Fl
to Fl+1 = Fl ∪ {fl}. Meanwhile, the remaining risk budget
is also updated as follows: %l+1 = %l 	 ρ(fl), where 	 is
an operation that updates the left-over risk budget, taking into
account the risk of the newly added fact fl. In the most general
case, %l+1 is incrementally computed and needs to be revised
based on ρ(F ∪ Fl−1 ∪ {fl}). However if the risk function is
simply the sum of the risks of individual perturbations, then 	
is just subtraction, i.e., %l+1 = %l−ρ(fl). Finally, we model a
state gl as the set of embeddings of the facts in Fl along-with
the available budget %l at that state.
Action. An action at time l, denoted by al for 1 ≤ l < T ,
is to add a fact fl ∈ P \ Fl s.t. ρ(fl) ≤ % 	 %l. Since a fact
is a triple of head entity, tail entity and their relationship, an
action al involves choosing a head entity, a tail entity, and a
relation. Thus the search complexity is O(E×R×E), which is
prohibitively high. Section III-B uses a decomposition strategy
to reduce it to O(E +R+ E) .
(g1, a

(h)
1 , a

(r)
1 , a

(t)
1 , g2, ..., gT−1, a

(h)
T−1, a

(r)
T−1, a

(t)
T−1, gT ), is

a path where gT is terminal state. Sampling a path is also
called running an episode.
Termination of an episode. Episode’s termination condition
is governed by the budget %. An MDP path terminates when
the remaining budget %l at any state l is not enough to select
any further action. Further we enforce that our MDP is a finite
horizon MDP, hence if the budget does not exhaust after m
steps, we terminate the process. m is set as a hyper-parameter
which denotes the maximum possible length of a path.
Reward. First, our agent should reduce the plausibility of
the target fact as much as possible. In addition, we also
want to discourage the agent to choose perturbations that are
highly risky. One way to do that is to encourage the agent to
choose longer episodes, because for a given budget, in a longer
episode, each perturbation has to have a lower risk than in an
episode of a shorter length. Also notice that the manipulation
score produced by the final set of perturbations at the end
of an episode is critical to our objective. The intermediate
drop in the score is irrelevant. At any intermediate step, even
if the manipulation score is low, we should not discard the
exploration because by adding more perturbations the final
drop could increase. To achieve this, we set a reward function
which is fully realized only after adding all the perturbations.
Reward rl for any l ≤ T − 1 is 0, the reward is non-zero
for the last action aT−1. For l = T , one factor of the reward
is based on the manipulation in the plausibility score of the
target fact, i.e., sF (f∗) − sFT

(f∗), where F and FT are the

sets of facts in states g1 and gT respectively. The higher
the final manipulation, more the reward. The other factor is
based on the length of the episode, i.e., 1 − 1

T + ε, where
ε < 1 is a hyperparameter. For a higher value of T , the
reward will be higher. Combining the two, the final reward
is: rT = ((1− 1

T ) + ε) · (sF (f∗)− sFT
(f∗)).

Lastly we set the discount factor γ = 1. Hence the final
reward is propagated back to every intermediate step. Notice
that since our MDP has a finite horizon, it is feasible to
propagate the reward information back in this way.

B. Optimization policy under the hierarchical decomposition
For discrete optimization problems with a finite horizon, Q-

learning to learn the paths for MDPs is shown to outperform
other policy optimization methods like Advantage Actor Critic
(AAC) [9]. Thus, we propose our optimization model using Q-
learning.

The expected reward for taking an action al at a given state
gl, is given by the Q-function Q(sl, al). The function values
are stored in the form of a table called Q-table. During training,
the agent aims to accurately learn the entries of the Q-tables.
The Q-tables thus store the expected reward for a given (state,
action) pair which is a combination of the transition probability
of states and the deterministic rewards in states.

To compute the optimal expected reward for an action al at
a given state gl, Q-learning directly fits the Bellman optimality
equation Thus the optimal action at any given state gl can then
be chosen by the simple greedy policy:
a∗ = π(gl) = argmaxal Q

∗(gl, al).
In our case, we set the granularity of an action al to

choosing one fact. This action is decomposed into three
parts a(h)l , a

(r)
l , a

(t)
l , i.e., choosing the head entity, relation,

and tail entity. It is hard to directly design the function
Q(gl, a

(h)
l , a

(r)
l , a

(t)
l ) and apply one policy to select each of

the three individual actions efficiently. Hence we learn three
different Q functions for each of them as described below.
Three level decomposition. To address the above men-
tioned problem, we integrate three deep Q networks (DQN),
Q = {Q(h), Q(r), Q(t)}, to model Q values for each of the
decomposed actions. The first function Q(h) is responsible for
guiding the policy to select the head entity a

(h)
l . Depending

on the selected a(h)l , the second DQN Q(r) learns a policy to
select relation a(r)l . Finally given head entity and relation, the
third DQN Q(t) learns the policy to select the tail entity a(t)l .

We now discuss our greedy policy on parametrized Q

function. Let i be one of {h, r, t}. Then θ(i) = {W (i)
1 ,W

(i)
2 }

denote weights to be trained for the i-th DQN of the cor-
responding Q function. the greedy policies for selecting the
corresponding actions are then given by the following equa-
tions

a
(h)
l = π(gl) = argmax

h∈E
Q

(h)
(gl, h; θ

(h)
) (2)

a
(r)
l = π(gl, a

(h)
l ) = argmax

r∈R
Q

(r)
(gl, a

(h)
l , r; θ

(r)
) (3)

a
(t)
l = π(gl, a

(h)
l , a

(r)
l ) = argmax

t∈E
Q

(t)
(gl, a

(h)
l , a

(r)
l , t; θ

(t)
) (4)

Recall that for a given target fact, our goal is to find a
sequence of perturbations D. After decomposition, the output



sequence is basically 0 ≤ l < T, (a
(h)
l , a

(r)
l , a

(t)
l ). In what

follows, we first describe the general training method we use to
learn the parameters of the Q functions. Once the parameters
are learnt, they are used to output D for a test target fact.

C. Training algorithm

In this section, we describe our training algorithm in detail.
The goal of training in the Q-learning framework is to learn the
Q-function, i.e., essentially learning the entries in the Q-tables.
Since our Q-functions are deep neural networks parameterized
by their corresponding weights, our training objective is to
learn these weights using exploration of the RL agent. We
assume the score function s(·) and risk function ρ(·) are
accessible to the attacker during the training, via query oracles.
The peudocode of our training algorithm for a given target fact
is shown in Algorithm 1.

Algorithm 1 RATA TRAIN(F, f∗, s, ρ, %)

1: e← Number of episodes
2: m← Maximum length of an episode
3: Initialize Q functions with random parameters
4: while episode ≤ e do
5: l← 1; Fl = F ; %l = %
6: while l ≤ m do
7: Select a(h)

l , a
(r)
l and a(t)l using Eq 2, 3 and 4

8: kl ← ρ(a
(h)
l , a

(r)
l , a

(t)
l )

9: %l = %l 	 kl
10: if %l < 0 then
11: break
12: end if
13: Fl ← F ∪ {(a(h)

l , a
(r)
l , a

(t)
l )}

14: end while
15: Compute reward r = ((1− 1

l ) + ε) · (sF (f∗)− sFl
(f∗))

16: Update the transition probabilities and the weight parameters of Q using a replay
buffer

17: end while
18: Return the learnt parameters of Q

Similar to other finite horizon RLs, it first sets two hyperpa-
rameters, namely, the number of episodes e and the maximum
length of each episode m. After they are initialized, the Q-
function parameters are randomly initialized (see Lines 1-3).
Then in the beginning of each episode, the available budget of
that episode is set as the budget constraint provided as input
(Line 5). Each episode is run either till the budget is exhausted
(Line 10) or if budget permits, till the maximum length of an
episode set by the hyperparameter e (Line 4).

At every step of the episode, the best triple (a
(h)
l , a

(r)
l , a

(t)
l )

is selected based on the current parameters of Q. The risk
of the triple is “subtracted” from the available budget for the
episode. Finally the triple is added a perturbation if the budget
permits (Lines 6–13).

At the end of an episode, two key updates related to Q
table are performed. First, based on the states that are visited
in the episode, the transition probabilities are updated. The
probability of visiting gl+1 from gl is updated as the proportion
of the times gl+1 is visited out of those that gl is visited.

Secondly, the final reward is observed and accordingly the
parameters of the Q function are updated. The goal of this
update is to learn the set of parameters that yields the best
reward. However, the key challenge is to keep the training

stable while avoiding over-fitting. Thus, updating these param-
eters for every episode tends to make the learning unstable. To
address this, we use a technique called memory replay buffer,
frequently used in RL.

IV. EXPERIMENTS

RATA is evaluated against the baselines on two benchmark
datasets. In this section we describe the experimental set up
and analyze the performance of the compared algorithms.
Baselines. There is no previous work that can perform the
KG data poisoning attack problem under a budget constraint,
however there are two works that study the attack without
considering a exposure risk constraint: DirectAdd [5] and
CRIAGE [6]. CRIAGE uses an inverter for optimizing the
search for the perturbations. The inverter works only for
multiplicative KG completion models such as DistMult [13].
Hence we compare CRIAGE only against DistMult. Zhang et
al. [5] proposed an attack algorithm that works for additive
models as well.
KG completion models. As stated, for the experiments in-
volving CRAIGE we use a mulitplicative completion model
DistMult [13]. For the experiments of DirectAdd, besides
DistMult, we choose another two state-of-the-art completion
models – TransE [14] and TransR [10]. We use OpenKE
implementation of all the completion models [15].
Knowledge graphs. We test our algorithms on two most
commonly used KG benchmark datasets, namely, FB15k
and WN18. FB15k is mined from Freebase, a collaborative
knowledge base consisting of a large number of real-world
facts. WN18 is mined from WordNet, which is a large lexical
knowledge graph. Both the graphs were introduced in [14].
The authors also fixed the training and test sets that have been
traditionally used for benchmarking.
Target facts. Target facts are chosen from the test sets. We
perform our experiments on two different types of target facts.
First all the facts are ranked based on their plausibility scores
generated by the KG completion model. Our first type of target
facts are highly plausible facts. This set is created by choosing
100 random facts from the top 500 ranked test facts. Similarly
the second set of low plausibility facts is formed by choosing
target facts from the bottom 500 test facts. Note that for an
attacker it is more beneficial to attack a highly plausible target
fact. If an attacker can effectively corrupt highly plausible
facts, more damage is inflicted on the users of the KG.
Risk. As we argued in the introduction, a simple defense
system, a KG moderator can have, is to use the existing KG
completion model to judge the exposure risk of a perturbation.
Thus for an individual perturbation fact f , we set its risk as
ρ(f) = 1 − sF (f). Thus if f has a high plausibility score
(sF (f)), since the completion model believes it as a true fact,
its exposure risk is low and vice versa.

Exposure risk of a perturbation set D is a function of its
constituent individual perturbations. We consider two such
functions for our experiments- (i) SUM: ρ(D) =

∑
f∈D ρ(f),

and (ii) MAX: ρ(D) = maxf∈D ρ(f).



Graph Algorithm Clean DirectAdd CRIAGE RATA@70 RATA@80 RATA@90 RATA@100
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

FB15K
TransE
TransR
DistMult

0.33
0.31
0.28

0.51
0.53
0.45

0.27
0.24
0.23

0.44
0.47
0.41

-
-
0.18

-
-
0.38

0.30
0.26
0.26

0.46
0.49
0.44

0.27
0.25
0.22

0.43
0.47
0.41

0.26
0.24
0.21

0.42
0.45
0.40

0.26
0.24
0.21

0.42
0.44
0.39

WIN18
TransE
TransR
DistMult

0.41
0.44
0.47

0.75
0.77
0.78

0.29
0.30
0.34

0.61
0.62
0.64

-
-
0.27

-
-
0.59

0.29
0.31
0.37

0.64
0.65
0.68

0.29
0.29
0.32

0.60
0.62
0.64

0.27
0.27
0.29

0.58
0.59
0.61

0.26
0.27
0.28

0.57
0.57
0.59

TABLE I: Performance comparison of RATA and baselines: DirectAdd and CRAIGE are the two baselines. RATA@x means
RATA constrained by budget x% of the total budget used by any baseline. The risk function is SUM and the target facts are
highly plausible facts. Bold entry denotes RATA’s performance is at per with at least one baseline, boxed entry denotes RATA
is at per with both the baselines (when applicable).

Graph Algorithm Clean DirectAdd CRIAGE RATA@70 RATA@80 RATA@90 RATA@100
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

FB15K
TransE
TransR
DistMult

0.27
0.26
0.23

0.48
0.49
0.44

0.23
0.22
0.20

0.43
0.45
0.40

-
-
0.17

-
-
0.36

0.27
0.26
0.23

0.46
0.47
0.43

0.26
0.25
0.22

0.44
0.46
0.42

0.23
0.22
0.21

0.43
0.45
0.41

0.22
0.21
0.20

0.43
0.44
0.41

WIN18
TransE
TransR
DistMult

0.35
0.37
0.38

0.61
0.63
0.66

0.26
0.27
0.31

0.49
0.50
0.55

-
-
0.26

-
-
0.51

0.32
0.33
0.36

0.56
0.58
0.60

0.28
0.27
0.33

0.53
0.50
0.57

0.26
0.26
0.31

0.50
0.49
0.55

0.25
0.25
0.30

0.49
0.48
0.53

TABLE II: Same as Table I for low plausibility target facts.

Parameter settings. RATA has two specific parameters, the
number of episodes, e and the maximum number of states in
one episodes, m. Unless mentioned otherwise, we use e = 100
and m = 50 as default. For the baselines we use their default
values as mentioned in [6] and [5]. The completion models
are also set to their default parameter values as prescribed in
[16].
Evaluation metric. The evaluation protocol we use is the
standard one used for KG attacks [5], [6]. Given a target fact
f = (h, r, t), first either the head or the tail entity of the fact
is removed from the KG. Then a trained completion model
is used to predict the missing entity. The algorithm ranks
all the entities in a descending order. Rank of the missing
entity in that order is stored. Finally ranks from a completion
model trained on the clean dataset and on perturbed datasets
generated by different attack methods are compared. Two
metrics used to do this comparison are - (i) Mean Reciprocal
Rank (MRR): Mean Reciprocal Rank of the missing entities
in all the targets, (ii) H@10 (Hits at 10): Fraction of times the
missing entity appears in the top 10 ranked entities. Clearly
under both metrics, a lower score indicates a better attack
performance.

70 80 90 100

Budget percentage

0.55
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0.80

H
@

10

70 80 90 100

Budget percentage

0.55

0.60

0.65

0.70
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H
@
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DirectAdd CRAIGE RATA Clean

(a) SUM risk function (b) MAX risk function

Fig. 1: Performance comparison under different risk budgets

Attack performance of RATA against the baselines. Since
the baselines cannot ingest an exposure risk constraint, in

this set of experiments we run the baseline without any
budget constraint and see how RATA performs in comparison
when the budget constraint is imposed. We compute the total
available budget as the risk incurred by the perturbation set
produced by any of the baseline produces. Next we constrain
RATA to use a fraction of that risk budget. Particularly in the
following, RATA@x denotes that RATA is allowed to use x
percent of the total budget used by the baseline. We compare
the various attack algorithms under the SUM risk function,
performance is similar for MAX and hence omitted.

We present the result of our experiments using this risk
function for high plausibility and low plausibility target facts
in Table I and II respectively, where the column Clean refers
to the scores before adding any perturbation. After the attack,
once the perturbation set is added, the scores drop, and a lower
score denotes a better attack performance.

In Table I, the target facts are highly plausible facts, i.e.,
the facts for which the completion model produces a high
plausibility score. As can be seen, RATA starts matching the
attack performance of the baselines using about 80% of the
budget. This is particularly true in comparison to a generic
attack, DirectAdd. Since CRAIGE is a specialized attack
against DistMult, outperforming CRAIGE is more difficult.
Further on a denser graph, where there are more facts to
choose from, the performance of RATA improves. Thus for
WIN18, RATA starts matching even the attack performance
of CRAIGE at a relatively lower budget.

For the low plausibility targets in Table II, the attack
performance of every algorithm is relatively worse, as the
drop in the score is less. The reason is these facts already
have low plausibility scores and the other related facts to these
facts also have low plausibility. Remember RATA aims to find
low risk yet related facts as perturbations for a given target
fact. Since the related facts of a low plausibility target also
have low plausibility, using them as peturbations increases the
risks. Still, RATA’s performance is comparable to DirectAdd



for slightly higher budgets, i.e., 90%.
One may wonder at this point if it possible to extend the

baselines to be risk budget aware and see how they perform
compared to RATA. We answer this question in the following.

Attack performance of baselines under risk constraint.
It is non-trivial to train the baselines to be budget aware
from scratch. Instead, we take perturbation sets produced
by the baseline algorithms under no budget constraint and
sort the constituent facts based on their exposure risks. Then
we keep discarding the high risk facts till the given budget
constraint is satisfied. This ensures that the fewest facts from
the perturbation sets obtained by the baselines need to be
removed, to meet the risk budget. We choose DisMult as our
target completion model since both the baselines can work
on DisMult. The target facts are high plausibility facts. Our
evaluation metric is H@10 and the graph used is Win18.
Figures 1 (a) and (b) show the results corresponding to risk
functions SUM and MAX respectively. Clearly under lower
budget, the performance of all three methods deteriorates.
However the baselines deteriorate much faster, than RATA.
This also illustrates the importance of being risk aware during
training.

V. RELATED WORK AND FUTURE WORK

Adversarial attack on graph data has been studied recently
for various application context such as graph clustering [17],
spectral clustering [18] and link prediction [12]. [8] con-
sidered the risk aware adversarial attack on graphs. There
have been recent advancements on data poisoning attacks on
graphs as well. [11] first studied poisoning attacks on neural
network for attributed graphs. [12] has shown reinforcement
learning algorithms can be effectively used for node injec-
tion attacks on graph. [19] proposed data poisoning attack
against factorization-based embedding methods on homoge-
neous graphs. In targeted data poisoning attack on graph
data, [20] performed unnoticeable perturbations using iterative
gradient methods, to hide targeted individuals from being
detected by deep graph community detection models.

There are several key differences between graphs and
knowledge graphs because of which the above mentioned
attack methods cannot be directly applied on KGs. Firstly,
graph algorithms primarily focus on exploiting the structural
similarity or homophily of the nodes in the graph. In a KG,
the structure alone is not significant, instead the relational
similarity between entities and relations plays a more crucial
role [21]. Secondly, the end goal of an attacker on the graph is
to misclassify nodes or community-subgraphs based on their
connectivity and structures [11]. In KG, the goal is manipulate
the performance of the KG completion models, which relies
on predicting the plausibility of a missing fact [22].

The two most closely related works to the problem we stud-
ied, are our baselines, [5] and [6]. [5] proposed a targeted data
poisoning attack for general knowledge graph embeddings.
[6] investigated robustness of multiplicative models such as
DisMult [13] for (head, relation, entity)-triple prediction task.

However, as we discussed, none of these two works considered
the exposure risk while performing their attacks.

The attack considered in the paper is a targeted, black
box attack. A natural future direction is to study whether
it is possible to learn a general attack model which is not
specific to a target. Secondly black box attacks are inferior in
performance to white box attacks. Hence studying effective
white box attack on knowledge graphs (while being risk
conscious) remains an important challenge. Finally, defense
against knowledge graph attacks has not been studied yet, and
we hope that defense against RATA could lay a foundation.
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