
Exact and Consistent Interpretation of Piecewise Linear Models Hidden behind
APIs: A Closed Form Solution

Zicun Cong∗, Lingyang Chu§, Lanjun Wang§, Xia Hu∗, Jian Pei∗
∗Simon Fraser University, Burnaby, Canada

§ Huawei Technologies Canada Co., Ltd., Burnaby, Canada
Emails: {zcong, huxiah, jpei}@sfu.ca, {lingyang.chu1, lanjun.wang}@huawei.com

Abstract—More and more AI services are provided through
APIs on cloud where predictive models are hidden behind
APIs. To build trust with users and reduce potential appli-
cation risk, it is important to interpret how such predictive
models hidden behind APIs make their decisions. The biggest
challenge of interpreting such predictions is that no access
to model parameters or training data is available. Existing
works interpret the predictions of a model hidden behind an
API by heuristically probing the response of the API with
perturbed input instances. However, these methods do not
provide any guarantee on the exactness and consistency of their
interpretations. In this paper, we propose an elegant closed
form solution named OpenAPI to compute exact and consistent
interpretations for the family of Piecewise Linear Models
(PLM), which includes many popular classification models. The
major idea is to first construct a set of overdetermined linear
equation systems with a small set of perturbed instances and
the predictions made by the model on those instances. Then,
we solve the equation systems to identify the decision features
that are responsible for the prediction on an input instance.
Our extensive experiments clearly demonstrate the exactness
and consistency of our method.

I. INTRODUCTION

More and more machine learning systems are deployed
as cloud services to make important decisions routinely in
many application areas, such as medicine, biology, finan-
cial business, and autonomous vehicles [14]. As more and
more decisions in both number and importance are made,
the demand on clearly interpreting these decision making
processes is becoming ever stronger [16]. Accurately and
reliably interpreting these decision making processes is the
key to many essential tasks, such as detecting model fail-
ures [1], building trust with public users [34], and preventing
models from unfairness [48].

Many methods have been proposed to interpret a machine
learning model (see Section II for a brief review). Most of
those methods are applicable only when they have full access
to training data and model parameters. Unfortunately, they
cannot interpret decisions made by machine learning models
encapsulated by cloud services, because service providers
always protect and hide their sensitive training data and
predictive models as top commercial secrets [44]. More often
than not, only application program interfaces (APIs) are
provided to public users.

The local perturbation methods [7], [11], [34], [35] are
developed to interpret predictive models that only APIs but
no training data or model parameters are known. The major
idea is to identify the decision features of a model by
analyzing the predictions on a set of perturbed instances
that are generated by perturbing (i.e., slightly modifying)
the features of an instance to be interpreted. However, since
the space of possible feature perturbations is exponentially
large with respect to the dimensionality of the feature space,

those methods can only heuristically search a tiny portion of
the perturbation space in a reasonable amount of time. There
is no guarantee that the decision features found are exactly
the decision features of the model to be interpreted [8]. The
reliability of the explanations still remains an unsolved big
challenge [10]. Poor interpretations may mislead users in
many scenarios [35].

Can we compute exact and consistent interpretations of
decisions made by predictive models hidden behind cloud
service APIs? In this paper, affirmatively we provide an ele-
gant closed form solution for the family of piecewise linear
models. Here, a piecewise linear model (PLM) is a non-
linear classification model whose classification function is a
piecewise linear function. In other words, a PLM consists
of many locally linear regions, such that all instances in the
same locally linear region are classified by the same locally
linear classifier [8]. The family of PLM hosts many popular
classification models, such as logistic model trees [24], [42]
and the entire family of piecewise linear neural networks [8]
that use MaxOut [15] or ReLU family [13], [19], [29] as
activation functions. For example, the implementations of
the AlexNet [23], the VGG Net [40], and the ResNet [20]
all belong to the family of PLM. Due to the extensive
applications [26] and tremendous practical successes [23] of
piecewise linear models, exact interpretations of piecewise
linear models hidden behind APIs are greatly useful in many
critical application tasks.

Our major technical contribution in this paper is to
develop OpenAPI, a method to exactly interpret the pre-
dictions made by a PLM model behind an API without
accessing model parameters or training data. Specifically,
OpenAPI identifies the decision feature, which is a vec-
tor showing the importance degree of each feature, for
an instance to be interpreted by finding the closed form
solutions to a set of overdetermined linear equation sys-
tems. The equation systems are simply constructed using
a small set of sampled instances. We prove that the decision
features identified by OpenAPI are exactly the decision
features of the PLM with probability 1. Our interpretations
are consistent within each locally linear region, because
OpenAPI accurately identifies the decision features of a
locally linear classifier, and those decision features are the
same for all instances in the same locally linear region. We
conduct extensive experiments to demonstrate the exactness
and consistency of our interpretations superior to five state-
of-the-art interpretation methods [7], [34], [38], [39], [43].

The rest of the paper is organized as follows. We review
related works in Section II, and formulate our problem in
Section III. We develop OpenAPI in Section IV, and present
the experimental results in Section V. We conclude the paper
in Section VI.

613

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00059

II. RELATED WORKS

How to interpret decisions made by predictive models is
an emerging and challenging problem. There are four major
groups of methods, briefly reviewed here.

First, the instance attribution methods find the training
instances that significantly influence the prediction on an
instance to be interpreted. Wojnowicz et al. [45] used
influence sketching to identify the training instances that
strongly affect the fit of a regression model by efficiently
estimating Cook’s distance [9]. Koh et al. [22] proposed
influence functions to trace the prediction of a model and
identify the training instances that are the most responsible
for the prediction. Bien et al. [4] proposed a prototype
selection algorithm to find a small set of representative
training instances that capture the full variability of a class
without confusing with the other classes. Zhou et al. [49]
identified the instances that dominate the activation of the
same hidden neuron of a convolutional neural network, and
used the common labeled concept of those instances to
interpret the semantic of the hidden neuron.

The instance attribution methods rely heavily on training
data, which, unfortunately, is unavailable in most of the
practical scenarios where only the APIs of the predictive
models are provided.

Second, the model intimating methods train a self-
explaining model to intimate the predictions of a deep neural
network [3], [6], [21]. Hinton et al. [21] proposed to distill
the knowledge of a large neural network by training a
smaller network to imitate the predictions of the large net-
work. To make the distilled knowledge easier to understand,
Frosst et al. [12] extended the distillation method [21] by
training a soft decision tree to mimic the predictions of a
deep neural network. Ba et al. [3] trained a shallow mimic
network to distill the knowledge of one or more deep neural
networks. Wu et al. [46] used a binary decision tree to mimic
and regularize the prediction function of a deep time-series
model. Guo et al. [18] trained a Dirichlet Process regression
mixture model to approximate the decision boundary of the
intimated model near an instance to be interpreted.

The model intimating methods produce understandable
interpretations. They, however, cannot be directly applied to
interpret models hidden behind APIs, because they cannot
access training data to conduct mimic training. Moreover,
since a mimic model is not exactly the same as the intimated
model, the interpretations may not exactly match the real
behavior of the intimated model [8].

Third, the gradient analysis methods [39], [43], [50]
find the important decision features for an instance to be
interpreted by analyzing the gradient of the prediction score
with respect to the instance. Simonyan et al. [39] generated a
class-saliency map and a class-representative image for each
class of instances by computing the gradient of the class
score with respect to an input instance. Zhou et al. [50]
proposed CAM to find discriminative instance regions for
each class using the global average pooling in Convolutional
Neural Networks (CNN). Selvaraju et al. [36] generalized
CAM [50] to Grad-CAM by identifying important regions
of an image, i.e., a sub-matrix, and propagating class-
specific gradients into the last convolutional layer of a
CNN. Smilkov et al. [41] proposed SmoothGrad to visually
sharpen the gradient-based sensitivity map of an image to
be interpreted. Chu et al. [8] transformed a piecewise linear

neural network into a set of locally linear classifiers, and
interpreted the prediction on an input instance by analyzing
the gradients of all neurons with respect to the instance.

The interpretations produced by the gradient analysis
methods are faithful to the real behavior of the model
to be interpreted. The computation of gradients, however,
requires full access to model parameters, which is usually
not provided by the predictive models hidden behind APIs.

Last, the local perturbation methods interpret the be-
havior of a predictive model in a small neighborhood of the
instance to be interpreted. The key idea is to use a simple
and interpretable model to analyze the predictions on a set of
perturbed instances generated by perturbing the features of
the instance to be interpreted. Ribeiro et al. [34] proposed
LIME to capture the decision features for an instance to
be interpreted by training a linear model that fits the pre-
dictions on a sample of the perturbed instances. They also
proposed Anchors [35] to find the explanatory rules that
dominate the predictions on a sample of perturbed instances.
Fong et al. [11] proposed to interpret the classification result
of an image by finding the smallest pixel-deletion mask that
causes the most significant drop of the prediction score.

The local perturbation methods, on the one hand, generate
interpretations easy to understand without accessing model
parameters or training data. On the other hand, the interpre-
tations may not be even correct, since the interpretation error
is proportional to f (ε,n)+g(m), where the first component
f (ε,n) represents the parameter related error, ε being the
perturbation distance and n the number of perturbed in-
stances, and the second component g(m) is the approximate
model related error of the approximate model m. Parameters
not well selected may lead to a large error f (ε,n). The
perturbation distances may be so large that the target model’s
behaviors on those perturbed instances are too complicated
to be learned by a simple model. The approximate model
related error is due to the weaker approximation capabilities
of simple models. For example, a linear model cannot
exactly describe the non-linear behavior of a target model.

Although existing methods can decrease the errors in their
interpretations using smaller neighborhoods, more perturbed
instances, and better approximate models, the errors cannot
be eliminated due to the following reason. Different in-
stances may have different applicable perturbation distances,
that is, radii where the same interpretations still apply. The
proper perturbation distance for an instance can be arbitrarily
small, as the instance can be arbitrarily close to the boundary
of the locally linear regions.

Figure 1 elaborates the subtlety. Suppose the 2-
dimensional input space is separated into two regions by a
PLM (the solid boundary). Each region has a unique linear
classifier whose decision boundaries are the dashed lines.
The two red solid boxes of the same size represent the neigh-
borhoods of two instances, A and B. As the neighborhood
of A completely falls into a class region of the PLM, the
PLM behaves linearly there. Thus, the existing methods can
obtain accurate interpretations for the prediction on A by
applying a simple model to analyze the perturbed instances
from the neighborhood. However, the neighborhood of B
overlaps the decision boundary and thus the PLM does not
behave linearly in the neighborhood of B. Consequently, the
existing methods cannot find a simple model performing
exactly the same as the PLM.

The existing methods rely on a user defined perturba-

614

A
B

Figure 1: The hardness of getting exact interpretations for
PLMs.

tion distance. However, without accessing the parameters
of a target model, it is impossible to find a universally
applicable perturbation distance. One may wonder whether
we can shrink the neighborhood size adaptively until the
approximate models perfectly fit the perturbed instances.
Unfortunately, the numerical optimization techniques used
to train the approximate models, such as gradient descent,
do not allow the current methods to reach the exact solu-
tions [17]. The fact that existing methods cannot guaran-
tee exactness of interpretations prevents them from being
trusted by users. When the internal parameters of a target
model are unavailable, users cannot verify the correctness of
the interpretations. Therefore, users cannot tell whether an
unexpected explanation is caused by the misbehavior of the
model or by the limitations of the explanation methods [10].

In this paper, we develop OpenAPI to overcome the
shortage. OpenAPI guarantees to find the exact decision
features of the model to be interpreted with probability 1,
and thus leads to a significant advantage on producing exact
and consistent interpretations for the PLMs hidden behind
APIs.

III. PROBLEM DEFINITION

Denote by N a piecewise linear model (PLM), and by
x ∈ X an input instance of N , where X ∈ R

d is a d-
dimensional input space. x is also called an instance for
short. The output of N is y ∈ Y , where Y ∈ R

C is a C-
dimensional output space, and C is the total number of
classes.

A PLM works as a piecewise linear classification function
F : X → Y that maps an input x ∈ X to an output y ∈ Y .
Denote by Xk ⊂X the k-th locally linear region of X such
that F(·) operates as a locally linear classifier in Xk.

Denote by K the number of all locally linear regions of
F(·). Then, {X1, . . . ,XK} forms a partition of X , that is,
∪K

k=1Xk = X , and Xk ∩Xh = /0 when k �= h. For common
PLMs such as logistic model trees [24], [42] and piecewise
linear neural networks [8], [28], [31], the number of locally
linear regions is finite.

Without loss of generality, we write the locally linear
classifier in Xk as

σ(W	
k x+bk),

where Wk ∈R
d×C is a d-by-C dimensional coefficient matrix

of x ∈ Xk, bk ∈R
C is a C-dimensional bias vector, and σ(·)

is a probabilistic scoring function, which can be sigmoid and
softmax for binary classification and multi-class classifica-
tion, respectively. Since the softmax function is the general
form of the sigmoid function, we assume σ(·) to be the
softmax function by default, and write the complete form of

F(·) as follows.

F(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ(W	
1 x+b1) if x ∈ X1

σ(W	
2 x+b2) if x ∈ X2

...

σ(W	
K x+bK) if x ∈ XK

Given an input instance x, without loss of generality,
denote by Xk the locally linear region that contains x, the
classification on x is uniquely determined by the locally
linear classifier σ(W	

k x+ bk). For the sake of simplicity,
we omit the subscript k when it is clear from the context,
and write the classification result of x as

y = σ(W	x+b)

Following a principled approach of interpreting a machine
learning model [5], [7], [34], we regard an interpretation on
the classification result of an input instance x as the decision
features that classify x as one class and distinguish x from
the other C− 1 classes. The formal definition of decision
features will be discussed in Section IV-A. Formally, we
define the task to interpret PLMs hidden behind APIs as
follows.

Definition 1. Given the API of a PLM N and an input
instance x ∈ X , for each class c ∈ {1, . . . ,C}, our task is to
identify the decision features of N that classify x as class c
and distinguish it from the other C−1 classes.

IV. INTERPRETATION METHODS

In this section, we first introduce the decision features of
a PLM in classifying an instance. Then, we illustrate a naive
method to compute the decision features of a PLM under an
ideal case. Last, as the ideal case may not always appear,
we introduce the OpenAPI method that computes the exact
decision features without using any training data or model
parameters.

A. Decision Features of a PLM
Some existing methods [2] interpret model predictions

by computing the partial derivatives of model outputs with
respect to input features. The partial derivatives are used
as importance weights of features. However, those methods
do not work well for PLMs hidden behind APIs. First,
to reliably compute the exact partial derivatives, the in-
ternal parameters of PLMs are needed. Second, for all
instances in the same locally linear region, the weights of
the corresponding features have to be consistent, as they are
classified by the same locally linear classifier [8]. However,
the feature weights computed by the gradient-based methods
are different for different input instances.

Based on the coefficient matrices of the locally linear
classifiers, we propose a new way to interpret the pre-
dictions made by PLMs. Our proposed interpretation not
only describes the behaviors of PLMs exactly but is also
consistent for the predictions made by the same locally linear
classifiers.

Consider the output y of a PLM N on an instance x. For
any class c ∈ {1, . . . ,C}, the c-th entry of y, denoted by yc,
is the probability to predict x as class c. Denote by Wc ∈R

d

the c-th column of W and by bc ∈R the c-th entry of b, we

615

can expand the locally linear classifier y = σ(W	x+b) and

write the c-th entry of y as yc ∝ eW	
c x+bc .

Following the routine of interpreting conventional linear
classifiers, such as Logistic Regression and linear SVM [5],
Wc is the vector of weights for all features in predicting x
as class c. The features with positive (negative) weights in
Wc support (oppose) to predict x as class c.

Denote by Wc′ , c′ �= c, the vector of weights for all features
in predicting x as class c′. The difference between Wc and
Wc′ , Dc,c′ = Wc−Wc′ , identifies the features that classify x
as class c and distinguishes x from class c′. To be specific,

as yc/yc′ ∝ e(Wc−Wc′)	x+bc−bc′ , the input features of positive
values in Dc,c′ increase the confidence of the model on class
c over class c′, and vice versa. As a result, Dc,c′ defines
the decision boundary between class c and class c′, thus is
exactly the decision features of binary classification PLMs.

For general multi-class classification PLMs (i.e., C ≥ 2),
we interpret their predictions in the way of one-vs-the-rest.
We can identify the decision features that classify x as class c
and distinguish it from the other C−1 classes by the average
of the vectors Dc,c′ for all c′ ∈ {1, . . . ,C}\c. Since Dc,c = 0,
we can write this average of vectors as

Dc =
1

C−1

C

∑
c′=1

Dc,c′ (1)

Here, the decision features Dc are a d-dimensional vector
that contains the importance weight of each feature in
classifying x as class c. A feature with a larger absolute
weight in Dc is more important than one with a smaller
absolute weight in classifying x as class c. In addition, the
signs of the weights in Dc indicate the directions of the
influences of the features on the prediction. The features
of positive weights in Dc support the predictions of the
model on the class c over any other classes, and vice versa.
In other words, Dc is the answer to interpreting why a
PLM classifies an instance x as class c instead of some
other classes. As Dc is computed solely from the coefficient
matrices of the locally linear classifiers, for two instances x
and x′ in the same locally linear region, they have the same
Dc. This property enables our method to provide consistent
interpretations for predictions made on instances from the
same locally linear regions.

We can easily compute Dc when the model parameters of
a PLM are given. For example, Dc can be easily extracted
from the model parameters of the conventional PLMs such
as logistic model trees [24], [42]. For piecewise linear neural
networks, there is also an existing method [8] that computes
Dc in polynomial time when the model parameters are given.
However, none of the above methods can be used to compute
Dc when model parameters are unavailable.

B. A Naive Method
To use only the API of a PLM to compute Dc without

accessing any model parameters, in this subsection, we
introduce a naive method by solving C−1 determined linear
equation systems. In an ideal case, the solution is exactly the
same as Dc.

Given a tuple (x,y) where x ∈ X is an input instance
and y = σ(W	x+b) is the prediction on x, our goal is to
compute Dc for x by computing the set {Dc,c′ } such that
c′ ∈ {1, . . . ,C}\ c.

For c and c′, denote by Bc,c′ = bc−bc′ the difference be-
tween bias vectors bc and bc′ . By decomposing the softmax
function σ(·) of the locally linear classifier y=σ(W	x+b),
we have

yc

yc′
=

eW	
c x+bc

eW	
c′ x+bc′

= eDc,c′ 	x+Bc,c′ ,

which can be transformed into the following linear equation

Dc,c′
	x+Bc,c′ = ln(

yc

yc′
) (2)

Since x, yc and yc′ are known variables, Equation 2
contains d +1 unknown variables, which are the entries of
the d-dimensional vector Dc,c′ ∈R

d and the scalar Bc,c′ ∈R.
Tuple (Dc,c′ ,Bc,c′) fully characterizes the behavior of

a locally linear classifier y = σ(W	x + b) in classifying
classes c and c′. If two locally linear classifiers have exactly
the same (Dc,c′ ,Bc,c′) for every pair c and c′, they produce
exactly the same output y for the same input instance x.
As a result, we call (Dc,c′ ,Bc,c′) the core parameters of a
locally linear classifier in classifying classes c and c′. The
core parameters of the locally linear classifier for an instance
x is also said to be the core parameters of x for short.

For any pair c and c′, a naive method to compute the
core parameters of x is to construct and solve a determined

linear equation system, denoted by Ωc,c′
d+1, that consists of

d + 1 linearly independent linear equations with the same
core parameters as x.

Since we already obtain one of these linear equations from
(x,y), we only need to build another d linear equations by
independently and uniformly sampling d instances in the
neighborhood of x. A d-dimension hypercube with edge
length 2r and x as the center is defined as {p | ∀i |pi−xi| ≤
r, p ∈R

d}, where xi is the i-th entry of x. In this paper, the
neighborhood of x refers to the hypercube centered at x.
We will illustrate how to compute r later in Algorithm 1.

Denote by xi, i ∈ {1, . . . ,d}, the i-th sampled instance
in the neighborhood of x, and by yi the prediction on xi.
Obviously, yi can be easily obtained by feeding xi into the
API of a PLM. Tuple (xi,yi) is used to build the i-th linear

equation of Ωc,c′
d+1 in the same way as Equation 2.

In the ideal case where the core parameters of all sampled
instances are the same as the core parameters of x, all linear

equations in Ωc,c′
d+1 are linear equations of the same core

parameters as x. Therefore, we can write Ωc,c′
d+1 as

Ωc,c′
d+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Dc,c′
	x0 +Bc,c′ = ln(y0

c
y0

c′
)

Dc,c′
	x1 +Bc,c′ = ln(y1

c
y1

c′
)

...

Dc,c′
	xd +Bc,c′ = ln(yd

c
yd

c′
)

(3)

where (Dc,c′ ,Bc,c′) is the core parameters of x in classifying

classes c and c′, and x, yc and yc′ are rewritten as x0, y0
c

and y0
c′ , respectively, for notational consistency.

Next, we prove that the linear equations in Ωc,c′
d+1 are

linearly independent.

616

Denote by xi
j ∈R the j-th entry of xi. We write the coef-

ficient matrix of Ωc,c′
d+1 as a (d +1)-by-(d +1) dimensional

square matrix

A =

⎡
⎢⎢⎢⎣

1 x0
1 x0

2 . . . x0
d

1 x1
1 x1

2 . . . x1
d

...
...

...
...

1 xd
1 xd

2 . . . xd
d

⎤
⎥⎥⎥⎦ ,

where the first column stores the coefficients for variable
Bc,c′ . We prove that the linear equations in Ωc,c′

d+1 are linearly
independent by showing that A is a full rank matrix with
probability 1.

Lemma 1. When the perturbed instances are independently
and uniformly sampled from a hypercube, the coefficient
matrix A of Ωc,c′

d+1 is a full rank matrix with probability 1.

Proof:
Denote by Ai ∈R

d+1, i ∈ {0, . . . ,d}, the i-th row of A, by
Ai the sub-vector containing the last d entries of Ai, that
is, Ai = [xi

1,x
i
2, . . . ,x

i
d] = xi. Next, we prove the lemma by

contradiction.
Assume the rank of matrix A is not full. The last row of

matrix A must be a linear combination of the other rows.
Denote by α0, . . . ,αd−1 the weights of a linear combination,
we write Ad = α0 ∗A0 +α1 ∗A1 + · · ·+αd−1 ∗Ad−1.

Since the first entry of every row vector Ai is 1, α0 +
α1 + · · ·+αd−1 = 1. Recall that Ai is a subvector of Ai for
all i ∈ {0, . . . ,d}, we have

Ad = α0 ∗A0 +α1 ∗A1 + · · ·+αd−1 ∗Ad−1 (4)

By plugging αd−1 = 1−(α0+α1+ · · ·+αd−2) into Equa-
tion 4, we can derive

Ad = α0 ∗ (A0−Ad−1)+ · · ·+αd−2 ∗ (Ad−2−Ad−1)+Ad−1
(5)

Since Equation 5 only contains the d− 1 free variables
α0, . . . ,αd−2, Ad is contained in the (d − 1)-dimensional
subspace V spanned by (A0−Ad−1), . . . , (Ad−2−Ad−1).

Since Ad = xd , Ad is independently and uniformly sampled
from a d-dimensional continuous space, and the probability
that Ad is sampled from the (d− 1)-dimensional subspace
V is 0. Therefore, the probability that Equation 5 holds
is 0, which means Ad cannot be represented as a linear
combination of the other rows. This contradicts with the
assumption that A is not a full rank matrix. In sum, A is a
full rank matrix with probability 1.

Lemma 1 holds as long as the perturbed instances are
independently and uniformly sampled from a hypercube. By

Lemma 1, Ωc,c′
d+1 is a determined linear equation system that

is guaranteed to have a unique solution with probability 1.
By solving each of the C− 1 linear equation systems in

{Ωc,c′
d+1 | c′ ∈ {1, . . . ,C}\c}, we can easily determine the core

parameters of x0 for each pair of c and c′. Then, we can
apply Equation 1 to compute Dc.

The naive method introduced above is applicable when
all sampled instances and the instance x0 have the same
core parameters. However, since we do not know the model
parameters of the PLM, we cannot guarantee that those
instances have the same core parameters. In other words,

the ideal case may not always hold in practice. In sequel,
the naive method cannot accurately compute Dc all the time.
Indeed, when the ideal case assumption does not hold, the
performance of the naive method can be arbitrarily bad.

Theorem 1. Denote by β ∗ the solution of Ωc,c′
d+1. When the

ideal case does not hold, the probability that β ∗ is the core
parameters of x0 is 0 for at least one pair of classes c and
c′.

Proof: Denote by β i = (Di
c,c′ ,B

i
c,c′), i ∈ {0, . . . ,d}, the

core parameters of xi, and by P(β ∗ = β 0) the probability of
β ∗ = β 0. We only need to show P(β ∗ = β 0) = 0 for at least
one pair of c and c′.

When the ideal case does not hold, there is at least one
sampled instance, denoted by xi, i∈ {1, . . . ,d}, that does not
have the same core parameters as x0. Therefore, β i �= β 0 for
at least one pair of classes c and c′.

By the definition of β i, xi satisfies

Di
c,c′
	xi +Bi

c,c′ = ln(
yi

c

yi
c′
).

If β ∗ = β 0, then xi satisfies

D0
c,c′
	xi +B0

c,c′ = ln(
yi

c

yi
c′
).

Therefore, a necessary condition for β ∗ = β 0 is that xi

satisfies

(Di
c,c′ −D0

c,c′)
	xi +(Bi

c,c′ −B0
c,c′) = 0. (6)

As a result, P(β ∗ = β 0) cannot be larger than the probability
P that xi satisfies Equation 6.

Recall that β i �= β 0 for at least one pair of c and c′. The
value of P must fall into one of the following two cases.

Case 1: if Di
c,c′ = D0

c,c′ , then Bi
c,c′ �= B0

c,c′ . In this case, no

xi satisfies Equation 6, thus P = 0.
Case 2: if Di

c,c′ �= D0
c,c′ , then P is the probability that

xi is located on the hyperplane defined by Equation 6. In
this case, P is still 0 because xi is independently uniformly
sampled from a d-dimensional hypercube.

In summary, P(β ∗ = β 0) ≤ P = 0. The theorem follows.

In summary, the naive method only works in the idea case
where all perturbed instances have the same core parameters
as the input instance x0. The extremely strong assumption
limits the method to be usable in practice. First, as discussed
in Section II, it is impossible for users to heuristically select
a perturbation distance that works for all instances. Second,
if the perturbed instances have different core parameters,
according to Lemma 1 and Theorem 1, the naive method
may not obtain a correct interpretation. Next, we develop
OpenAPI to overcome these weaknesses.

C. The OpenAPI Method
Now we are ready to introduce the OpenAPI method

to reliably and accurately compute Dc. Different from the
naive method, OpenAPI adaptively shrinks the perturbation
distance until it computes the exact interpretations with
probability 1.

617

For any two classes c and c′, OpenAPI computes the core
parameters β 0 of x0 by solving an overdetermined linear

equation system with d+2 linear equations. Denote by Ωc,c′
d+2

the overdetermined linear equation system. We build the first

d+1 linear equations of Ωc,c′
d+2 in the same way as the naive

method. The (d +2)-th linear equation of Ωc,c′
d+2 is built by

sampling an extra instance xd+1 in the neighborhood of the
input instance x0.

Denote by β i = (Di
c,c′ ,B

i
c,c′), i ∈ {0, . . . ,d + 1}, the core

parameters of xi in classifying classes c and c′. We now

show that, when Ωc,c′
d+2 has at least one solution, the solution

is unique and is equal to every β i with probability 1.

Theorem 2. For any two classes c and c′, if Ωc,c′
d+2 has at

least one solution, then the solution is unique and is exactly
β i for any i ∈ {0, . . . ,d +1} with probability 1.

Proof: Denote by Θc,c′
i the linear equation system that

is constructed by removing the linear equation with respect
to xi from Ωc,c′

d+2 and keeping the rest d+1 linear equations.
Obviously, any solution of Ωc,c′

d+2 is a solution of Θc,c′
i .

According to Lemma 1, the coefficient matrix of Θc,c′
i is a

full rank square matrix with probability 1. This means that
the probability that Θc,c′

i has a unique solution is 1.
Since Ωc,c′

d+2 has at least one solution and any solution of
Ωc,c′

d+2 is a solution of Θc,c′
i , the solution of Ωc,c′

d+2 is unique,
and is equal to the solution of Θc,c′

i . Next, we prove that,
with probability 1, the solution of Ωc,c′

d+2 is exactly β i for
any i ∈ {0, . . . ,d +1}.

Denote by β ∗ = (D∗c,c′ ,B
∗
c,c′) the unique solution of Ωc,c′

d+2,
and by P(β ∗ = β i) the probability of β ∗ = β i. We only need
to show P(β ∗ �= β i) = 0 for any i ∈ {0, . . . ,d +1}.

By the definition of β i, xi satisfies

Di
c,c′
	xi +Bi

c,c′ = ln(
yi

c

yi
c′
).

Since β ∗ is the unique solution of Ωc,c′
d+2, xi also satisfies

D∗c,c′
	xi +B∗c,c′ = ln(

yi
c

yi
c′
).

Therefore, xi must satisfy

(D∗c,c′ −Di
c,c′)

	xi +(B∗c,c′ −Bi
c,c′) = 0 (7)

Consequently, a necessary condition for β ∗ �= β i is that
xi is located on the hyperplane H defined by Equation 7.
Therefore, P(β ∗ �= β i) cannot be larger than the probability
P that xi is located on H. The value of P(β ∗ �= β i) must fall
into one of the following three cases.

Case 1: if D∗c,c′ = Di
c,c′ and B∗c,c′ = Bi

c,c′ , then β ∗ = β i,
which means P(β ∗ �= β i) = 0.

Case 2: if D∗c,c′ =Di
c,c′ and B∗c,c′ �=Bi

c,c′ , then no xi satisfies
Equation 7, which means P = 0. Thus, P(β ∗ �= β i)≤ P = 0.

Case 3: if D∗c,c′ �= Di
c,c′ , because x0 is drawn from an un-

derlying continuous distribution in the d-dimensional space

Input: A := the API of a PLM, c := the class c to
interpret, x0 := the instance to interpret,
m :=the maximum number of iterations.

Output: D∗c := the value of Dc computed by
OpenAPI, r := the hypercube edge length.

Initialize: r← 1.0, I ← /0, D∗c ← null.
while m �= 0 do

Sample d +1 points in the hypercube with edge
length r: S←{x1, . . . ,xd+1}.

for each c′ ∈ {1, . . . ,C}\ c do
Construct Ωc,c′

d+2 by d +2 points in S∪x0.

If Ωc,c′
d+2 has a solution β ∗ then I ← I ∪β ∗.

end
if |I|<C−1 then
I ← /0, r← r/2.

else
Compute D∗c from I by Equation 1, and
break.

end
m← m−1

end
return D∗c , r.

Algorithm 1: OpenAPI(A,c,x0,m)

X [30], and each xi, i∈ {1, . . . ,d+1}, is uniformly sampled
from a d-dimensional hypercube, we have P = 0. Therefore,
P(β ∗ �= β i)≤ P = 0.

In summary, P(β ∗ �= β i) = 0 and the theorem follows.

According to Theorem 2, if Ωc,c′
d+2 has a solution, then

it is the core parameters β 0 of x0 with probability 1. In
this case, we can directly compute β 0 as the closed form

solution to Ωc,c′
d+2. If Ωc,c′

d+2 has no solution, we can reconstruct
it by randomly sampling a new set of instances in the
neighborhood of x0, and solve the corresponding linear
equation system. This iteration of reconstructions continues
until we sample a set of instances that have the same core

parameters as x0. Then, we can find the solution to Ωc,c′
d+2,

which is β 0 with probability 1.
Recall that all instances within the same locally linear re-

gion have the same core parameters. If we sample instances
from a proper hypercube that is contained in the locally
linear region of x0, then the instances sampled certainly have
the same core parameters as x0, and we are sure to find the
valid solution β 0.

Intuitively, a hypercube with smaller edge length r is more
likely to be contained by the locally linear region of x0.
However, it is impractical to empirically set one value of r to
fit all PLMs and arbitrary instances to be interpreted, because
the sizes of locally linear regions vary significantly for
different PLMs, and the maximum r of a proper hypercube
can be arbitrarily small for an input instance that is very
close to the boundary of a locally linear region. Therefore,
as described in Algorithm 1, OpenAPI adaptively finds a
proper hypercube by reducing the edge length r by half in
each iteration of reconstruction.

As long as x0 is contained in a locally linear region,
OpenAPI eventually can find a proper hypercube and
compute a valid output, denoted by D∗c . If x0 is located on

618

the boundary of a locally linear region, then there is no
proper hypercube with r > 0 for x0, and OpenAPI may fail
to return a valid output. However, since the probability that
x0 is located on the boundary of a locally linear region is
0, the probability that OpenAPI returns the valid D∗c is still
1. To guarantee OpenAPI terminates even in the unlikely
case that x0 is located on the boundary of a locally linear
region, OpenAPI stops after a certain number of iterations,
which is a system parameter. In our experiments, we set
the maximum number of iterations for OpenAPI as 100.
However, since the probability that x0 is located on the
boundary of a locally linear region is 0, the non-terminating
case never happened in our experiments, and OpenAPI
always terminates in less than 20 iterations. If OpenAPI
cannot find a proper hypercube within the maximum number
of iterations, the smallest edge length r, which is constructed
at the last iteration, will be returned.

Since OpenAPI adaptively finds a proper hypercube, the
initial value of r has little influence on the accuracy of
OpenAPI. Thus, we simply initialize it as r = 1.0 in our
experiments.
OpenAPI has three major advantages. First, OpenAPI

computes interpretations in closed form, and provides a solid
theoretical guarantee on the exactness of interpretations.
Second, our interpretation is consistent for all instances
in the same locally linear region. This is because all in-
stances contained in the same locally linear region have
the same decision features, which are accurately identified
by OpenAPI. Last, OpenAPI is highly efficient, of time
complexity O(T ·C(d+2)3), where d and C are constants for
a PLM, and T is the number of iterations of reconstruction.

V. EXPERIMENTS

In this section, we evaluate the performance of OpenAPI
by investigating the following four questions: (1) Can
OpenAPI effectively explain model predictions? (2) Are the
interpretations consistent? (3) How well are the perturbed in-
stances being used for interpretations? (4) Are the computed
interpretations exact?

To demonstrate that OpenAPI can effectively inter-
pret the predictions of PLMs, we compare OpenAPI
with four baseline interpretation methods, Saliency
Maps [39], Gradient * Input [38], Integrated
Gradient [43], and LIME [34]. The first three gradient-
based methods [2] require to access the model parameters.
LIME can interpret the predictions of PLMs with only API
access.
Saliency Maps interprets a prediction by taking the

absolute value of the partial derivative of the prediction with
respect to the input features. Gradient * Input uses
the feature-wise product between the partial derivative and
the input itself as the interpretation for a prediction. Rather
than computing the partial derivative of the input instance x0,
Integrated Gradient computes the average partial
derivatives when the input varies along a linear path from
a baseline point to x0. LIME interprets the predictions of a
classifier by training an interpretable model on the outputs of
the classifier in a heuristically selected neighborhood of the
input instance. We adopt the same experiment settings used
in [37] and [8] for Integrated Gradient and LIME,
respectively.

To evaluate the capability of interpretation with only API
access to PLMs, in addition to the naive method discussed

Data Sets
FMNIST MNIST

Train Test Train Test
PLNN 0.888 0.865 0.980 0.971
LMT 0.950 0.870 0.991 0.949

Table I: The training and testing accuracies of all models

in Section IV-B, we design two more baselines by slightly
extending ZOO [7] and LIME [34] as follows.
ZOO is a zeroth-order approximation method approximat-

ing the gradients of functions. It first samples d pairs of
instances by perturbing x0 back-and-forth along each axis of
R

d for a heuristically fixed perturbation distance h. Then,
it estimates the gradient of a model with respect to x0 by
computing the symmetric difference quotient [25] between
each pair of sampled instances. Equation 2 clearly shows
that the derivative of ln(yc

yc′
) with respect to x is exactly

Dc,c′ . Thus, it is natural to use ZOO to estimate Dc,c′ . Then
Dc is computed from the estimated Dc,c′ in the same way
as Equation 1.
LIME interprets predictions in the one-vs-the-rest

way [34]. It is easy to extend LIME such that it uses Dc
as its interpretations. Rather than training a linear model
to approximate the predicted probability yc of a perturbed
instance, the extended LIME tries to fit ln(yc

yc′
) of the

perturbed instances. Because of the linear relationship be-
tween an instance x and the corresponding value ln(yc

yc′
), the

coefficients of the linear model are an approximation to Dc,c′ .
Similarly to ZOO, Dc is computed from the estimated Dc,c′ .
In our experiments, two types of linear regression models
are used as approximators. The one using regular linear
regression is called Linear Regression LIME and the
one using ridge regression is called Ridge Regression
LIME.

We use the published Python codes of Integrated
Gradient1, LIME2 and ZOO3. The remaining algorithms
are implemented using the PyTorch library [32]. All ex-
periments are conducted on a server with two Xeon(R)
Silver 4114 CPUs (2.20GHz), four Tesla P40 GPUs, 400GB
main memory, and a 1.6TB SSD running Cenos 7 OS.
Our source code is published at GitHub 〈https://github.com/
researchcode2/OpenAPI〉.

We conduct all experiments across two public datasets,
FMNIST [47] and MNIST [27]. FMNIST contains fashion
images in 10 categories and MNIST contains images of
handwritten digits from 0 to 9. Both datasets consist of a
training set of 60,000 examples and a test set of 10,000
examples. We represent each of the 28-by-28 gray scale
images by cascading the 784 pixel values into a 784-
dimensional feature vector. The pixel values are normalized
to the range [0,1].

On each dataset, we train a Logistic Model Tree
(LMT) [24] and a Piecewise Linear Neural Network
(PLNN) [8] as the target PLMs to interpret. The classifi-
cation performance of all models are shown in Table I.

Following the design in [24], we use the standard C4.5
algorithm [33] to select the pivot feature for each node and
a sparse multinomial logistic regression classifier is trained

1https://github.com/ankurtaly/Integrated-Gradients
2https://github.com/marcotcr/lime
3https://github.com/huanzhang12/ZOO-Attack

619

(a) Boot (b) Pullover (c) Coat (d) Sneaker (e) T-shirt

(f) P, Boot (g) P, Pull. (h) P, Coat (i) P, Sneak. (j) P, T-shirt

(k) L, Boot (l) L, Pull. (m) L, Coat (n) L, Sneak. (o) L, T-shirt

Figure 2: The averaged images of the selected FMNIST
classes and their averaged decision features of PLNN (P)
and LMT (L) computed by OpenAPI. “Pull.” and “Sneak.”
are short for pullover and sneaker, respectively

on each leaf node of the tree. To prevent overfitting, we
adopt two stopping criteria. A node is not further split if
it contains less than 100 training instances or the accuracy
of the regression classifier is greater than 99%. Since every
leaf node of a LMT is a locally linear classifier, the leaf
node itself corresponds to a locally linear region, and we
can directly extract the ground truth decision features for an
input instance x0 from the multinomial logistic regression
classifier of the leaf node containing x0.

To train a PLNN, we use the standard back-propagation
to train a fully-connected network that adopts the widely
used activation function ReLU [13]. The numbers of neurons
from the input layer to the output layer are 784, 256, 128,
100 and 10, respectively. This network is used as a baseline
model on the website 〈https://github.com/zalandoresearch/
fashion-mnist〉 of FMNIST. We use OpenBox [8] to compute
the locally linear regions and the ground truth decision
features Dc for an input instance of a PLNN.

Since LIME is too slow to process all instances in 24
hours, for each of FMNIST and MNIST, we uniformly
sample 1000 instances from the testing set, and conduct all
experiments for all methods on the sampled instances.

A. Can OpenAPI effectively Interpret Model Predictions?
Good interpretations should be easily understood by hu-

man being. In this subsection, we first conduct a case study
to illustrate the effectiveness of the interpretations. Then, we
quantitatively evaluate the effectiveness of the interpretations
given by OpenAPI and the four baseline methods. The three
gradient-based methods are allowed to use the parameter
information of the PLMs to compute their interpretations.
LIME and OpenAPI are only allowed to use the APIs of
the PLMs.

Following the tradition of interpretation visualization [2],
we show the decision features as heatmaps, where red and
blue colors indicate respectively features that contribute
positively to the activation of the target output and features

having a suppressing effect. The first row of Figure 2 shows
the averaged images of five selected classes from FMNIST.
For each class, its averaged decision features of the trained
PLNN and LMT are shown in the second and third rows,
respectively.

Comparing the heatmaps with their corresponding aver-
aged original images, it is clear that the decision features
legibly highlight the image parts with strong semantical
meanings, like the heal of boots, the shoulder of pullovers,
the collar of coats, the surface of sneakers, and the short
sleeves of T-shirts. A closer look at the averaged images
suggests that the highlighted parts describe the differences
between one type of objects against the others.

Since the LMT is trained with sparse constraints, the
decision features of the LMT are sparser than the ones of
the PLNN. As a result, the PLNN captures more details of
the objects. Since both the LMT and the PLNN are trained
on the same training data, the decision features learnt by
the LMT highlight similar image patterns as the decision
features of the PLNN. This demonstrates the robustness
of our proposed decision features in accurately interpreting
general PLMs.

To quantitatively evaluate the effectiveness of interpre-
tations, we adopt the evaluation method used by Ancona
et al. [2]. The method assumes that a good interpretation
model should identify features that are more relevant to the
predictions. Therefore, modifications on those relevant fea-
tures should result in sensible variations on the predictions.
Following this idea, we modify the input features according
to their weights in the computed interpretations as follows.

For each interpretation method, given an input instance
x0 with predicted label c, we sort the input features in the
descending order of their absolute weights. Based on the
ranking, we proceed iteratively altering the input features
one at a time and up to 200 features. As the features having
positive (negative) weights support (opposite) to predict x0

as c, to decrease the confidence of a PLM on class c, we
replace the input features of positive and negative weights
by 0 and 1, respectively. The changes on the predictions are
evaluated by two metrics, the change of prediction prob-
ability (CPP) and the number of label-changed instance
(NLCI) [8]. CPP is the absolute change of the probability
of classifying x0 as c and NLCI is the number of instances
whose predicted labels change after their features being
altered.

As shown in Figure 3, Saliency Maps performs worst
among all methods. The result is consistent with the con-
clusion in [2] that the instances may have features that
opposite the predictions of some classes. Those features play
an important role in interpreting the model predictions and
can only be detected by signed interpretation methods. As
shown in Figure 3 and mentioned by Ancona et al. [2],
Gradient * Input captures important features better
than Integrated Gradient. The latter involves the
gradients of the unrelated instances into interpretations,
therefore cannot precisely interpret the predictions. As ex-
pected, LIME performs poorer than most of the gradient-
based methods due to the fact that LIME has no access
to the model parameters. The lack of internal information
prevents it from getting accurate interpretations. However,
only with API access to the PLMs, OpenAPI outperforms
the other methods most of the time, because our method
computes the decision features that are exactly used by the

620

PLMs in prediction. The good performance demonstrates the
effectiveness of our method.

0 100 200
#Changed Features

0.0

0.5

1.0

A
v
g
.
C
P
P

S OA L I G

(a) FMNIST (LMT)

0 100 200
#Changed Features

0.0

0.5

1.0

A
v
g
.
C
P
P

S OA L I G

(b) FMNIST (PLNN)

0 100 200
#Changed Features

0.0

0.5

1.0

A
v
g
.
C
P
P

S OA L I G

(c) MNIST (LMT)

0 100 200
#Changed Features

0.0

0.5

1.0

A
v
g
.
C
P
P

S OA L I G

(d) MNIST (PLNN)

0 100 200
#Changed Features

0.0

500

1000

A
v
g
.
N
L
C
I

S OA L I G

(e) FMNIST (LMT)

0 100 200
#Changed Features

0.0

500

1000

A
v
g
.
N
L
C
I

S OA L I G

(f) FMNIST (PLNN)

0 100 200
#Changed Features

0.0

500

1000

A
v
g
.
N
L
C
I

S OA L I G

(g) MNIST (LMT)

0 100 200
#Changed Features

0.0

500

1000

A
v
g
.
N
L
C
I

S OA L I G

(h) MNIST (PLNN)

Figure 3: The effectiveness of different interpretation meth-
ods

B. Are the Interpretations Consistent?
Consistent interpretation methods provide similar inter-

pretations for similar input instances, and produce fewer
contradictions between interpretations. Consistency is im-
portant. For example, it is confusing if, for the instances in
a locally linear region, the weights of their corresponding
features are not the same, because those instances are
classified by the same locally linear classifier of the PLM.

Using the same experiment settings as Chu et al. [8],
we comprehensively analyze the consistency of the inter-
pretations produced by Saliency Maps, Integrated
Gradient, Gradient * Input, and OpenAPI by
comparing the decision features of similar input instances.

Denote by x0 an input instance classified as class c, and
by x1 the testing instance that is the nearest neighbour of
x0 in Euclidean distance. For an interpretation method, we
measure the interpretation consistency by the Cosine Simi-
larity (CS) between the computed interpretations of x0 and
x1. Apparently, a larger CS indicates a better interpretation
consistency.

The CS of all compared methods are evaluated on the test-
ing data sets of FMNIST and MNIST. As shown in Figure 4,
the interpretations given by Integrated Gradient are
more consistent than the other two gradient based meth-
ods. Integrated Gradient smooths the differences

0 500 1000
Index of Instance

0.0

0.5

1.0

C
S

S OA L I G

(a) FMNIST (LMT)

0 500 1000
Index of Instance

0.0

0.5

1.0

C
S

S OA L I G

(b) FMNIST (PLNN)

0 500 1000
Index of Instance

0.0

0.5

1.0

C
S

S OA L I G

(c) MNIST (LMT)

0 500 1000
Index of Instance

0.0

0.5

1.0

C
S

S OA L I G

(d) MNIST (PLNN)

Figure 4: The cosine similarity (CS for short) between the
interpretations of each instance and its nearest neighbor.
The results are separately sorted in the descending order
of cosine similarity. “S”, “OA”, “I”, “G”, and “L” have
the same meaning as in Figure 3. Each curve represents
a method, and is plotted using 1000 data points. We use
different markers to make the curves more legible.

between the interpretations for similar instances using the
average partial derivatives of a set of instances to compute
its interpretations. At the same time, the smooth operation
also decreases the accuracy of its interpretations. The CS
of OpenAPI is better than all other methods on all PLMs
and datasets. All instances contained in the same locally
linear region have exactly the same decision features, and
thus the CS of OpenAPI should always equal to 1 on those
instances. As an input instance x0 and its nearest neighbor in
the test set may not always belong to the same locally linear
region, the CS of OpenAPI is not equal to 1 for all instances
in our experiments. The poor performances of the baseline
methods can be anticipated, since their interpretations rely
on the gradients of the input instances, and they tend to
provide distinct interpretations for individual instances.

In summary, the interpretation consistency of OpenAPI
is significantly better than the other baseline methods.

C. How Well Are the Perturbed Instances?

The accuracy of all compared methods in computing Dc
of an input instance x0 largely depends on the quality of
the set of sampled instances. Here, the quality of a set of
instances is good if they are contained in the same locally
linear region as x0, and thus those instances have the same
core parameters as x0 and significantly improve the accuracy
in computing Dc.

To comprehensively evaluate the performance of the
compared methods in sampling a set of good instances,
we measure the quality of the sampled instances by the
following two metrics.

The Region Difference (RD) measures the consistency of
the locally linear regions of the sampled instances. For any
input instance x0, if all sampled instances are contained in
the same locally linear region as x0, then RD= 0; otherwise,
RD = 1.

621

O
p
en
A
P
I

L
(1
0
−8)

L
(1
0
−4)

L
(1
0
−2)

R
(1
0
−8)

R
(1
0
−4)

R
(1
0
−2)

N
(1
0
−8)

N
(1
0
−4)

N
(1
0
−2)

Z
(1
0
−8)

Z
(1
0
−4)

Z
(1
0
−2)

0.0

0.5

1.0

A
v
g
.
R
D

0 0 0 0 0 0 0 0 0

OA L R N Z

(a) FMNIST (LMT)

O
p
en
A
P
I

L
(1
0
−8)

L
(1
0
−4)

L
(1
0
−2)

R
(1
0
−8)

R
(1
0
−4)

R
(1
0
−2)

N
(1
0
−8)

N
(1
0
−4)

N
(1
0
−2)

Z
(1
0
−8)

Z
(1
0
−4)

Z
(1
0
−2)

0.0

0.5

1.0

A
v
g
.
R
D

0 0 0 0 0 5
∗1
0
-3

OA L R N Z

(b) FMNIST (PLNN)

O
p
en
A
P
I

L
(1
0
−8)

L
(1
0
−4)

L
(1
0
−2)

R
(1
0
−8)

R
(1
0
−4)

R
(1
0
−2)

N
(1
0
−8)

N
(1
0
−4)

N
(1
0
−2)

Z
(1
0
−8)

Z
(1
0
−4)

Z
(1
0
−2)

0.0

0.5

1.0

A
v
g
.
R
D

0 0 0 0 0 0 0 0 0

OA L R N Z

(c) MNIST (LMT)

O
p
en
A
P
I

L
(1
0
−8)

L
(1
0
−4)

L
(1
0
−2)

R
(1
0
−8)

R
(1
0
−4)

R
(1
0
−2)

N
(1
0
−8)

N
(1
0
−4)

N
(1
0
−2)

Z
(1
0
−8)

Z
(1
0
−4)

Z
(1
0
−2)

0.0

0.5

1.0
A
v
g
.
R
D

0 0 0 0 0 1
0
-2

OA L R N Z

(d) MNIST (PLNN)

Figure 5: The average RD of all methods. N(h), Z(h),
L(h), and R(h) are the performance measures of the naive
method, ZOO, Linear Regression LIME, and Ridge
Regression LIME with respect to perturbation distance
h, respectively. We give the average RD values on top of
some ticks for the ease of reading.

The Weight Difference (WD) is defined as

WD =
∑C

c′=1 ∑|S|i=1 ||D0
c,c′ −Di

c,c′ ||1
(C−1)|S| ,

which measures the average L1 distance between D0
c,c′ of

the input instance x0 and Di
c,c′ of the i-th instance xi in the

set of sampled instances S = {x1, . . . ,xm}.
Apparently, a RD that is equal to 0 indicates a perfect

consistency among the locally linear regions of all sampled
instances. A small WD means a high similarity between the
core parameters of x0 and the sampled instances. If RD and
WD are both small, the quality of the sampled instances is
good, and Dc of x0 can be accurately computed.

We evaluate RD and WD of ZOO, Linear
Regression LIME, Ridge Regression LIME,
the naive method, and OpenAPI on the testing data sets
of FMNIST and MNIST. For each data set, we use every
testing instance as the input instance x0 once, and evaluate
RD and WD of the corresponding set of sampled instances.
Figures 5 and 6, respectively, show the average RD and
WD of all testing instances.

The performance of the baseline methods in RD and
WD relies heavily on the heuristic perturbation distance h.
Since there is no effective method to set h, we evaluate the
performance of the baseline methods with respect to a wide
range of h. Specifically, we test h = 10−2, 10−4, and 10−8.

As shown in Figure 5, the average RD of the baseline
methods increases when h increases. The results verify our
claim in Section IV-C that a smaller hypercube is more
likely to be contained in the locally linear region of an input
instance.

Since the RD of the baseline methods drops to 0 when
h is small, it is appealing to ask whether we can fix h to a
small value such that the baseline methods can always find a

O
p
en
A
P
I

L
(1
0
−8)

L
(1
0
−4)

L
(1
0
−2)

R
(1
0
−8)

R
(1
0
−4)

R
(1
0
−2)

N
(1
0
−8)

N
(1
0
−4)

N
(1
0
−2)

Z
(1
0
−8)

Z
(1
0
−4)

Z
(1
0
−2)

0

200

W
D

0 0 0 0 0 0 0 0 0 0.
5

OA L R N Z

(a) FMNIST (LMT)

O
p
en
A
P
I

L
(1
0
−8)

L
(1
0
−4)

L
(1
0
−2)

R
(1
0
−8)

R
(1
0
−4)

R
(1
0
−2)

N
(1
0
−8)

N
(1
0
−4)

N
(1
0
−2)

Z
(1
0
−8)

Z
(1
0
−4)

Z
(1
0
−2)

0

25

W
D

0 0 0 0 0

OA L R N Z

(b) FMNIST (PLNN)

O
p
en
A
P
I

L
(1
0
−8)

L
(1
0
−4)

L
(1
0
−2)

R
(1
0
−8)

R
(1
0
−4)

R
(1
0
−2)

N
(1
0
−8)

N
(1
0
−4)

N
(1
0
−2)

Z
(1
0
−8)

Z
(1
0
−4)

Z
(1
0
−2)

0

500

W
D

0 0 0 0 0 0 0 0 0 1.
5

OA L R N Z

(c) MNIST (LMT)

O
p
en
A
P
I

L
(1
0
−8)

L
(1
0
−4)

L
(1
0
−2)

R
(1
0
−8)

R
(1
0
−4)

R
(1
0
−2)

N
(1
0
−8)

N
(1
0
−4)

N
(1
0
−2)

Z
(1
0
−8)

Z
(1
0
−4)

Z
(1
0
−2)

0

25

W
D

0 0 0 0 0 1

OA L R N Z

(d) MNIST (PLNN)

Figure 6: WD of all methods. The upper and lower ends
of an error bar show the maximum and minimum WD,
respectively, for all testing instances. A marker represents
the mean of WD in the corresponding bar. We give the
maximum of WD values on top of some ticks for the ease of
reading. N(h), Z(h), L(h), and R(h) have the same meanings
as in Figure 5.

good sample of instances. Unfortunately, this is impossible.
The volume of locally linear regions varies significantly for
different PLMs. For example, as shown in Figure 5, when the
perturbation distance h= 10−4, the RD of ZOO is 0 for LMT,
but it is 0.005 and 0.01 for PLNN on FMNIST and MNIST,
respectively. Thus, h = 10−4 is good for LMT, but not good
enough for PLNN. One may argue that conservatively h can
take an extremely small value in the hope that it works for
both LMT and PLNN. However, since the number of locally
linear regions of a PLNN is exponential with respect to the
number of hidden units [8], [28], [31], the volume of some
locally linear regions of a large PLNN can be arbitrarily
close to zero. For any fixed value of h, one can always
construct a counter example that h is still too big for PLNN.
Even for the same PLM, the good perturbation distance may
still vary significantly for different input instances, and can
be arbitrarily small.

Recall that we can only access the API of a PLM, we have
no knowledge about the size of the locally linear regions of
the PLM. This makes it even harder to initialize an optimal
value of perturbation distance h that works universally on
all PLMs and input instances. A much better method is to
sample a set of good instances in an adaptive manner, just
as what OpenAPI does.

As shown in Figures 5 and 6, the average RD and WD
of OpenAPI are 0 on all data sets. This demonstrates the
superior capability of OpenAPI in adaptively sampling a
set of good instances.

D. Are the Interpretations Exact?
In this subsection, we systematically study the exactness

of interpretations by comparing the ground truth of the
decision features of a PLM with the decision features
identified by ZOO, Linear Regression LIME, Ridge
Regression LIME, the naive method, and OpenAPI.

622

O
p
en
A
P
I

L
(1
0
−8)

L
(1
0
−4)

L
(1
0
−2)

R
(1
0
−8)

R
(1
0
−4)

R
(1
0
−2)

N
(1
0
−8)

N
(1
0
−4)

N
(1
0
−2)

Z
(1
0
−8)

Z
(1
0
−4)

Z
(1
0
−2)

10−2

L
1
D
is
t

OA L R N Z

(a) FMNIST (LMT)

O
p
en
A
P
I

L
(1
0
−8)

L
(1
0
−4)

L
(1
0
−2)

R
(1
0
−8)

R
(1
0
−4)

R
(1
0
−2)

N
(1
0
−8)

N
(1
0
−4)

N
(1
0
−2)

Z
(1
0
−8)

Z
(1
0
−4)

Z
(1
0
−2)

10−3

105

L
1
D
is
t

OA L R N Z

(b) FMNIST (PLNN)

O
p
en
A
P
I

L
(1
0
−8)

L
(1
0
−4)

L
(1
0
−2)

R
(1
0
−8)

R
(1
0
−4)

R
(1
0
−2)

N
(1
0
−8)

N
(1
0
−4)

N
(1
0
−2)

Z
(1
0
−8)

Z
(1
0
−4)

Z
(1
0
−2)

10−1

L
1
D
is
t

OA L R N Z

(c) MNIST (LMT)

O
p
en
A
P
I

L
(1
0
−8)

L
(1
0
−4)

L
(1
0
−2)

R
(1
0
−8)

R
(1
0
−4)

R
(1
0
−2)

N
(1
0
−8)

N
(1
0
−4)

N
(1
0
−2)

Z
(1
0
−8)

Z
(1
0
−4)

Z
(1
0
−2)

10−3

105

L
1
D
is
t

OA L R N Z

(d) MNIST (PLNN)

Figure 7: L1Dist of all methods. The upper and lower ends
of an error bar show the maximum and minimum L1Dist,
respectively, for all testing instances. A marker represents
the mean of L1Dist. The L1Dist of the methods are plotted
in logarithmic scale. N(h), Z(h), L(h), and R(h) have the
same meaning as in Figure 5.

Denote by Dc the ground truth of decision features of a
PLM in classifying an input instance as class c, and by D∗c
the decision features computed by an interpretation method.
We measure the exactness of an interpretation by L1Dist,
the L1 distance between Dc and D∗c . Obviously, a smaller
L1Dist indicates a higher exactness of an interpretation.

We evaluate L1Dist of the four baseline methods and
OpenAPI on the testing data sets. For each data set, we
use every testing instance as the input instance, and evaluate
L1Dist of the interpretations. The average, minimum and
maximum L1Dist of all testing instances are reported in
Figure 7.

The large L1Dist of Ridge Regression LIME on
all datasets indicates that D∗c computed by the method is
significantly different from Dc of the PLMs. By carefully in-
vestigating the learned classifiers of Ridge Regression
LIME, we find that when the perturbed distances are very
small, the linear function used to approximate the predictions
always converges to a constant function that always outputs
the expected value of the predictions. The poor exactness
of Ridge Regression LIME is mainly caused by the
mis-selected approximate model. As a comparison, Linear
Regression LIME, which has no constraints on its co-
efficient matrix, performs much better than its counterpart
with ridge regression.

The L1Dist of the other baseline methods increases signif-
icantly when the perturbation distance h becomes larger than
a critical value. Since a smaller h leads to a better quality
of the sampled instances, it usually increases the accuracy
of most baseline methods in computing D∗c . However, as
discussed in Section V-C, the critical value of h varies
significantly for different models and instances, thus it is
impossible to find a golden value of h that always achieves
the best L1Dist in computing the decision features of all
models and instances.

We can also see that when h becomes extremely small,

Data Set FMNIST MNIST
LMT 6.0 8.6

PLNN 10.3 10.8

Table II: The average number of iterations of OpenAPI to
compute the interpretations for the models

L1Dist increases. The reason is that all methods suffer
from the classical problem of softmax saturation. When an
input instance x0 is classified with a probability extremely
close to 1 and the perturbed distance h becomes extremely
small, the PLMs have almost the same predictions on the
perturbed instances and the original instance. As a result,
the computation of the decision features becomes unstable,
which goes beyond the limited precision of Python in stably
manipulating floating point numbers. Also, extremely small
perturbations lead to linear equation systems with large
condition numbers, which are hard to solve numerically. Due
to the above reasons, extremely small perturbations hurt the
exactness of all methods.

The computation of the decision features becomes unsta-
ble due to two reasons.

In contrast, since OpenAPI is able to find the exact
decision features of a PLM with probability 1, it achieves
the best L1Dist performance on all data sets. In addition, as
shown in Table II, OpenAPI can find the exact interpreta-
tions with only a small number of iterations.

VI. CONCLUSIONS

In this paper, we tackle the challenge of interpreting a
PLM hidden behind an API. In this problem, neither model
parameters nor training data are available. By finding the
closed form solutions to a set of overdetermined equation
systems constructed using a small set of sampled instances,
we develop OpenAPI, a simple yet effective and efficient
method accurately identifying the decision features of a
PLM with probability 1. We report extensive experiments
demonstrating the superior performance of OpenAPI in
producing exact and consistent interpretations. As future
work, we will extend our work to reverse engineer PLMs
hidden behind APIs.

REFERENCES

[1] A. Agrawal, D. Batra, and D. Parikh. Analyzing the behavior
of visual question answering models. arXiv:1606.07356,
2016.

[2] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross. Towards
better understanding of gradient-based attribution methods for
deep neural networks. In ICLR, 2018.

[3] J. Ba and R. Caruana. Do deep nets really need to be deep?
In NIPS, pages 2654–2662, 2014.

[4] J. Bien and R. Tibshirani. Prototype selection for interpretable
classification. AOAS, pages 2403–2424, 2011.

[5] C. Bishop. Pattern recognition and machine learning (infor-
mation science and statistics). Springer, New York, 2007.

[6] Z. Che, S. Purushotham, R. Khemani, and Y. Liu. Distilling
knowledge from deep networks with applications to health-
care domain. arXiv:1512.03542, 2015.

[7] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh.
Zoo: Zeroth order optimization based black-box attacks to
deep neural networks without training substitute models. In
AIS Workshop, pages 15–26, 2017.

623

[8] L. Chu, X. Hu, J. Hu, L. Wang, and J. Pei. Exact and
consistent interpretation for piecewise linear neural networks:
A closed form solution. In KDD, 2018.

[9] R. D. Cook. Detection of influential observation in linear
regression. Technometrics, 19(1):15–18, 1977.

[10] M. Du, N. Liu, and X. Hu. Techniques for interpretable
machine learning. arXiv preprint arXiv:1808.00033, 2018.

[11] R. Fong and A. Vedaldi. Interpretable explanations of black
boxes by meaningful perturbation. ICCV, 2017.

[12] N. Frosst and G. Hinton. Distilling a neural network into a
soft decision tree. arXiv:1711.09784, 2017.

[13] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier
neural networks. In AIS, pages 315–323, 2011.

[14] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[15] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,
and Y. Bengio. Maxout networks. In ICML, pages III–1319–
III–1327, 2013.

[16] B. Goodman and S. Flaxman. European union regulations
on algorithmic decision-making and a” right to explanation”.
arXiv:1606.08813, 2016.

[17] R. Grosse. Lecture note 02 in intro to neural networks and
machine learning, 2018.

[18] W. Guo, S. Huang, Y. Tao, X. Xing, and L. Lin. Explaining
deep learning models–a bayesian non-parametric approach.
In NIPS, pages 4519–4529, 2018.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In ICCV, pages 1026–1034, 2015.

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, pages 770–778, 2016.

[21] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. arXiv:1503.02531, 2015.

[22] P. W. Koh and P. Liang. Understanding black-box predictions
via influence functions. arXiv:1703.04730, 2017.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, pages 1097–1105, 2012.

[24] N. Landwehr, M. Hall, and E. Frank. Logistic model trees.
Machine Learning, 59(1-2):161–205, 2005.

[25] P. D. Lax and M. S. Terrell. Calculus with Applications.
Springer, 2014.

[26] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436, 2015.

[27] Y. LeCun and C. Cortes. MNIST handwritten digit database.
2010.

[28] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the
number of linear regions of deep neural networks. In NIPS,
pages 2924–2932, 2014.

[29] V. Nair and G. E. Hinton. Rectified linear units improve
restricted boltzmann machines. In ICML, pages 807–814,
2010.

[30] N. M. Nasrabadi. Pattern recognition and machine learning.
JEI, 16(4):049901, 2007.

[31] R. Pascanu, G. Montufar, and Y. Bengio. On the number of
response regions of deep feed forward networks with piece-
wise linear activations. arXiv:1312.6098, 2013.

[32] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer.
Automatic differentiation in pytorch. In NIPS Workshop,
2017.

[33] J. R. Quinlan. C4. 5: Programs for Machine Learning.
Elsevier, 2014.

[34] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust
you?: Explaining the predictions of any classifier. In KDD,
pages 1135–1144, 2016.

[35] M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-
precision model-agnostic explanations. In AAAI, 2018.

[36] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell,
D. Parikh, and D. Batra. Grad-cam: Why did you say that?
visual explanations from deep networks via gradient-based
localization. arXiv:1610.02391, 2016.

[37] A. Shrikumar, P. Greenside, and A. Kundaje. Learning
important features through propagating activation differences.
PMLR, 2017.

[38] A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kun-
daje. Not just a black box: Learning important features
through propagating activation differences. arXiv preprint
arXiv:1605.01713, 2016.

[39] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside con-
volutional networks: Visualising image classification models
and saliency maps. arXiv:1312.6034, 2013.

[40] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. ICLR, 2015.

[41] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wat-
tenberg. Smoothgrad: Removing noise by adding noise.
arXiv:1706.03825, 2017.

[42] M. Sumner, E. Frank, and M. Hall. Speeding up logistic
model tree induction. DMKD, pages 675–683, 2005.

[43] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution
for deep networks. PMLR, 2017.

[44] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Stealing machine learning models via prediction apis. In USS,
pages 601–618, 2016.

[45] M. Wojnowicz, B. Cruz, X. Zhao, B. Wallace, M. Wolff,
J. Luan, and C. Crable. ”influence sketching”: Finding
influential samples in large-scale regressions. In ICBD, pages
3601–3612, 2016.

[46] M. Wu, M. C. Hughes, S. Parbhoo, M. Zazzi, V. Roth, and
F. Doshi-Velez. Beyond sparsity: Tree regularization of deep
models for interpretability. In AAAI, 2018.

[47] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms,
2017.

[48] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork.
Learning fair representations. In ICML, pages 325–333, 2013.

[49] B. Zhou, D. Bau, A. Oliva, and A. Torralba. Interpreting deep
visual representations via network dissection. TPAMI, 2018.

[50] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba.
Learning deep features for discriminative localization. In
CVPR, pages 2921–2929, 2016.

624

