
Mining Density Contrast Subgraphs

Yu Yang1, Lingyang Chu1, Yanyan Zhang1, Zhefeng Wang2, Jian Pei1 and Enhong Chen2

1Simon Fraser University, Burnaby, Canada
2University of Science and Technology of China, Hefei, China

{yya119,lca117,yanyanz}@sfu.ca, zhefwang@mail.ustc.edu.cn, jpei@cs.sfu.ca, cheneh@ustc.edu.cn

Abstract—Dense subgraph discovery is a key primitive in
many graph mining applications, such as detecting communities
in social networks and mining gene correlation from biolog-
ical data. Most studies on dense subgraph mining only deal
with one graph. However, in many applications, we have more
than one graph describing relations among a same group of
entities. In this paper, given two graphs sharing the same set
of vertices, we investigate the problem of detecting subgraphs
that contrast the most with respect to density. We call such
subgraphs Density Contrast Subgraphs, or DCS in short. Two
widely used graph density measures, average degree and graph
affinity, are considered. For both density measures, mining DCS
is equivalent to mining the densest subgraph from a “difference”
graph, which may have both positive and negative edge weights.
Due to the existence of negative edge weights, existing dense
subgraph detection algorithms cannot identify the subgraph we
need. We prove the computational hardness of mining DCS under
the two graph density measures and develop efficient algorithms
to find DCS. We also conduct extensive experiments on several
real-world datasets to evaluate our algorithms. The experimental
results show that our algorithms are both effective and efficient.

I. INTRODUCTION

Dense subgraph extraction lies at the core of graph data
mining. The problem and its variants have been intensively
studied. Most of the existing studies focus on finding the
densest subgraph in one network. For example, polynomial
time algorithms and efficient approximation algorithms are de-
vised to find the subgraph with maximum average degree [12].
There are also quadratic programming methods for extracting
subgraphs with high graph affinity density [18], [21].

In many real-world applications, there are often more
than one kind of relations among objects studied. Thus, it is
common to have more than one graph describing a same set
of objects, one kind of relation captured by one graph. As
a result, an interesting contrast data mining problem arises.
Given two graphs sharing the same set of vertices, what is
the subgraph such that the gap between its density in the two
graphs is the largest? We call such a subgraph the Density
Contrast Subgraph (DCS).

To demonstrate the power of DCS, consider the task of
surveying and summarizing the trends of an area, say data
mining research. Such a task is practical and common for
technical writers, academic researchers and graduate students
among many others. Based on a database of published data
mining papers, how can we detect trends from the database
automatically? Angel et al. [1] proposed to build a keyword
association graph from the input text data, and identify sto-
ries/topics via groups of densely-connected keywords from
it. For example, applying the method of [1] on data mining

papers we may find a topic “scalable tensor factorization”,
because the words “scalable”, “tensor” and “factorization”
often co-occur in papers. However, directly extracting dense
subgraphs corresponding to densely-connected keywords from
a keyword association graph like [1] may not help us detect
trends effectively. For example, in our experiments, if we just
extract dense subgraphs from the graph indicating pairwise
keywords association strength in the titles of data mining
papers published in the last 10 years, we find topics “time
series” and “feature selection”. But these two topics have been
intensively investigated ever since and do not present a new
trend. In the recent 10 years, according to the graph density
measure on the data we have, the topic “time series” even
cooled down a little bit.

To detect trends effectively, we take two keyword associa-
tion graphs into consideration and apply DCS algorithms. Be-
sides the keyword association graph based on papers published
recently, we also need the other keyword association graph
derived from the papers published in early years. Those groups
of keywords whose connection strengths are much tighter in
the recent keyword association graph than in the early keyword
association graph are identified as trends in data mining. In
our experiments we obtained results like “social networks”,
“matrix factorization” and “unsupervised feature selection”.
These topics all became popular only in recent years.

DCS can also be applied to detecting current anomalies
against historical data. Specifically, we can build a weighted
graph where the edge weights are our expectation of how
tightly the vertices are connected to each other, which can be
derived from, for example, historical data. Then, we observe
the current pairwise connection strength of vertices, and build
another weighted graph based on our observations. We apply
DCS on these two weighted graphs. Some typical application
scenarios include detecting emerging traffic hotspot clutters,
emerging communities in social networks, and money laun-
derer dark networks.

In this paper, we study the Density Contrast Subgraph
problem under two widely adopted graph density measures,
average degree and graph affinity. One may notice that for
both density measures, we may form a “difference” graph,
where the weight of each edge is obtained by the difference
of the weights of this edge in the two graphs. However, this
does not mean that traditional densest subgraph extraction
methods can be applied to find density contrast subgraphs.
In the traditional densest subgraph problems, edge weights are
always positive. In the difference graph of the density contrast
subgraph problem, we may have negative edge weights. The
existence of negative edge weights changes the nature of dens-
est subgraph finding substantially. For example, finding the

densest subgraph with respect to average degree in a graph with
only positive edge weights is polynomial time solvable [12],
and has an efficient 2-approximation algorithm [7], while if
the graph has negative edge weights, it becomes NP-hard and
also hard to approximate as to be proved in Section IV.

To tackle the Density Contrast Subgraph problem, we make
several technical contributions. We prove the computational
hardness of finding DCS under the two density measures of
average degree and graph affinity. For the average degree
measure, we also prove it is hard to approximate within a
factor of O(n1−ε). An efficient O(n)-approximation algorithm
is then developed to solve this problem. The DCS problem
under the graph affinity measure is also NP-hard, and is a
QP (Quadratic Programming) which is non-concave. For this
problem, we first devise an efficient 2-Coordinate Descent
algorithm that is guaranteed to converge to a KKT point. Based
on the 2-coordinate descent algorithm, we give a constructive
proof of that edges of negative weights cannot appear in a
DCS with respect to graph affinity. Using our construction, we
can further improve a KKT point solution to a positive clique
solution. A smart initialization heuristic is proposed to reduce
the number of initializations for our iterative algorithm, which
in experiments brings us speedups of 1-3 orders of magnitude.
Extensive empirical studies are conducted to demonstrate the
effectiveness and efficiency of our algorithms.

The rest of the paper is organized as follows. We review the
related work in Section II. In Section III, we briefly introduce
the two density measures used in our work, average degree and
graph affinity, and formulate the Density Contarst Subgraph
problem. In Section IV, we give our solutions to the DCS
problem under the measure of average degree. In Section V,
we tackle the DCS problem under the graph affinity measure.
We report the experimental results in Section VI and conclude
the paper in Section VII.

II. RELATED WORK

Dense subgraph extraction is a key problem in both algo-
rithmic graph theory and graph mining applications [1], [10],
[15], [19], [24]. One of the most popular definitions of sub-
graph density is the average degree. Intensive studies have been
conducted on finding a subgraph with the maximum average
degree in one single graph [4], [7], [9], [12]. Goldberg [12]
first proposed a polynomial time algorithm based on maximum
flow. Charikar [7] described a simple greedy algorithm which
has an approximation ratio of 2.

Besides average degree, graph affinity, which is a quadratic
function x>Ax of a subgraph embedding x ∈ 4n, is also
widely adopted as a measure of subgrah density [8], [18],
[21], [26]. Motzkin and Straus [20] proved that, for unweighted
graphs, maximizing graph affinity is equivalent to finding the
maximum clique in the graph. Pavan and Pelillo [21] first
proposed an algorithm based on replicator dynamics to find
local maximas of the quadratic function x>Ax on the simplex
4n. Liu et al. [18] proposed a highly efficient algorithm called
SEA (see Appendix) to solve the problem, where the core idea
is to use a shrink-and-expand strategy to accelerate the process
of finding Karush-Kuhn-Tucker (KKT) points. Wang et al. [26]
discussed the trade-off between the graph affinity density and
subgraph size in extracting dense subgraphs.

Please note that the existing work on maintaining dense
subgraphs on temporal graphs [1], [2], [4], [9] cannot solve
our problem, although two consecutive snapshots of a temporal
graph can be regarded as a special case of the input to DCS.
[1], [2], [4], [9] are all for extracting dense subgraphs from
the latest snapshot, where for a valid input there are no edges
with negative weights. The algorithms in [4], [9] can only deal
with unweighted graphs. In our problem, mining DCS from
two graphs is equivalent to mining dense subgraphs from a
“difference graph”, which may have negative edge weights.
We show in Section IV that, when the density measure is
average degree, the existence of negative edge weights makes
our DCS problem NP-hard and hard to approximate. This is
dramatically different from extracting densest subgraph with
respect to average degree [2], [4], [9], which is polynomial
time solvable and has an efficient 2-approximation algorithm.
For the graph affinity density measure, [1] considers a general
definition of subgraph density where edge density, the discrete
version of graph affinity, is used as a special case. However,
[1] is for maintaining all subgraphs whose density is greater
than a threshold, and only subgraphs with size (#vertices)
smaller than Nmax = 5 is considered. Thus, although mining
DCS with respect to graph affinity can be reduced to finding
the densest subgraph in one single graph (the “difference”
graph), techniques in [1] still cannot be used.

Mining dense subgraphs from multiple networks to find
“coherent” dense subgraphs also attracts much research in-
terest [13], [14], [17], [27]. For example, Wu et al. [27]
investigated the problem of finding a subgraph that is dense
in one conceptual network and also connected in a physical
network. All these studies focus on finding “coherent” dense
subgraphs in multiple graphs.

Another line of related research is contrast graph min-
ing, which aims at discovering subgraphs that manifest dras-
tic differences between graphs. Wang et al. [25] and Gio-
nis et al. [11] studied how to find the anomalous subgraphs that
contrast others in one graph. Ting and Bailey [23] proposed
algorithms to find the minimal contrast subgraph, which is
a graph pattern appears in one graph but not in the other
graph, and all of its proper subgraphs are either shared by or
not contained in the two graphs. Yang et al. [29] studied the
problem of detecting the most frequently changing subgraph
in two consecutive snapshots of a time-evolving graph. The
major difference between these studies and our work is that,
none of these studies adopt subgraph density as the measure
for mining contrast subgraphs.

[6] is the work closest to ours in literature. In [6], Ca-
dena et al. investigated how to extract the subgraph whose total
edge weight deviates from its expected total edge weight the
most. The total edge weight is related to the density measures
adopted in our work, average degree and graph affinity, since
the total edge weight of a subgraph is the numerator of this
subgraph’s average degree and edge density, which is often
regarded as the discrete version of graph affinity [18], [21],
[26]. However, these three measures are still quite different
from each other. Thus, properties of the problem in [6] and
our problems are very different.

Notation Description
G = 〈V,E,A〉 An undirected and weighted graph, where each

edge (u,v)∈E is associated with a positive weight
A(u,v)

G(S) = 〈V,E(S),A(S)〉 The induced subgraph of S in graph G
W (S) The total degree of S in graph G. W (S) =

∑(u,v)∈E(S) A(u,v)
4n A simplex. 4n = {x | ∑n

i=1 xi = 1,xi ≥ 0}
x ∈4n An embedding of a subgraph, xu denotes the

participation of u in this subgraph
Sx Support set of x. Sx = {u | xu > 0}
G1 = 〈V,E1,A1〉,
G2 = 〈V,E2,A2〉

Inputs of our Density Contrast Subgraph problem

GD = 〈V,ED,D〉 The difference graph between G2 and G1, where
D = A2−A1 and ED = {(u,v) | D(u,v) 6= 0}

GD+ = 〈V,ED+ ,D+〉 The “positive” part of GD, where D+(i, j) =
max{D(i, j),0} and ED+ = {(u,v) | D(u,v)> 0}

ND(i) The set of i’s neighbors in GD. ND(i) = { j |
D(i, j) 6= 0}

WD(i;GD(S)) The degree of vertex i in the induced subgraph
GD(S). WD(i;GD(S)) = ∑ j∈ND(i)∩S A(i, j)

TABLE I. FREQUENTLY USED NOTATIONS.

III. PRELIMINARIES

In this section, we introduce several essential concepts in
our discussion and formulate the Density Contrast Subgraph
problem. For readers’ convenience, Table I lists the frequently
used notations.

A. Measures of Graph Density

An undirected and weighted graph is represented by G =
〈V,E,A〉, where V is a set of vertices, E is a set of edges and
A is an affinity matrix. Since G is undirected, if (u,v) ∈ E
then (v,u) ∈ E. Denote by n = |V | the number of vertices and
m = |E| the number of edges. A is an n×n symmetric matrix.
The entry A(u,v) > 0 denotes the weight of the edge (u,v),
and A(u,v) = 0 if (u,v) /∈ E. Given an undirected graph G =
〈V,E,A〉 and a subset of vertices S, the induced subgraph of
S is denoted by G(S) = 〈S,E(S),A(S)〉, where E(S) = {(u,v) |
(u,v)∈ E∧u∈ S∧v∈ S}, and A(S) is a submatrix of A so that
only the row and columns of vertices in S are present.

Average degree is a widely investigated graph density
measure. Given an undirected graph G = 〈V,E,A〉 and a set
of vertices S, the total degree of the induced subgraph G(S) is
W (S) = ∑(u,v)∈E(S) A(u,v). The average degree of the induced
subgraph G(S) is defined by

ρ(S) =
W (S)
|S|

=
1
|S| ∑u∈S

∑
(u,v)∈E(S)

A(u,v) =
1
|S| ∑u∈S

W (u;G(S)) (1)

where W (u;G(S)) = ∑(u,v)∈E(S) w(u,v) is u’s degree in G(S).

Graph affinity is another popularly adopted graph density
measure. In graph affinity, a subgraph is represented by a sub-
graph embedding in a standard simplex 4n = {x | ∑n

i=1 xi =
1,xi ≥ 0}. For a subgraph embedding x = [x1,x2, ...,xn], the
entry xu indicates the participation importance of vertex u in
the subgraph. Denote by Sx = {u | xu > 0} the support set of x.
The graph affinity density of a subgraph embedding x ∈4n

is defined by

f (x) = x>Ax =
n

∑
i=1

n

∑
j=1

xix jA(i, j) = ∑
(u,v)∈ES

xuxvA(u,v) (2)

In traditional dense subgraph mining problems, when the
density measure is average degree, the densest subgraph is

2
2

1 3

2

3

5

2

6

1

1

4

-2

3

-1

2 1

4 3

2

𝑮𝟏 𝑮𝟐

𝑮𝑫 = 𝑮𝟐 − 𝑮𝟏 𝑮𝑫+

𝑣1

𝑣2
𝑣3

𝑣4
𝑣5

𝑣1

𝑣2 𝑣5

𝑣3

𝑣4

𝑣4

𝑣3

𝑣1 𝑣1

𝑣4

𝑣3
𝑣5𝑣5

𝑣2𝑣2

Fig. 1. An Example of the Difference Graph

often large in size [1], while if the density measure is graph
affinity, the support set of the densest subgraph embedding is
normally small [26].

B. Mining Density Contrast Subgraph

Given two undirected graphs G1 = 〈V,E1,A1〉 and G2 =
〈V,E2,A2〉, we want to find a subgraph such that its density
in G1 minus its density in G1 is a large value. Similar to
traditional dense subgraph mining, we are more interested
in the subgraph whose density difference is the greatest
among all subgraphs. Thus, the Density Contrast Subgraph
(DCS) problem can be formulated as an optimization problem.
Specifically, if the density measure is the average degree, the
optimization problem is

max
S⊆V

ρ2(S)−ρ1(S) =
W2(S)
|S|

−W1(S)
|S|

(3)

where W1(S) and W2(S) are total degrees of S in G1 and G2,
respectively. We call Eq. 3 the problem of Density Contrast
Subgraphs with respect to Average Degree (DCSAD).

If we adopt graph affinity as the density measure, the
optimization problem then becomes

max
x∈4n

f2(x)− f1(x) = x>A2x−x>A1x (4)

We call Eq. 4 the problem of Density Contrast Subgraphs
with respect to Graph Affinity (DCSGA). Note that, similar
to maximizing graph affinity in G, which is often used to
maximize the edge density (W (S)

|S|2) [26], we can also solve
(DCSGA) for finding a subgraph whose edge density gap in
G1 and G2 (WD(S)

|S|2) is maximized. To convert the solution x to
a set of vertices S, we just set S = Sx.

It is easy to find that to find the subgraph such that the
absolute value of its density difference is maximized, besides
solving Eq. 3 or Eq. 4, we also solve maxS⊆V ρ1(S)−ρ2(S) or
maxx∈4n f1(x)− f2(x).

A nice property that both Eq. 3 and Eq. 4 have is that the
objective equals the density of S’s induced subgraph (or x if
using graph affinity as density) in a “difference graph” between
G2 and G1. Given G1 = 〈V,E1,A1〉 and G2 = 〈V,E2,A2〉, the
difference graph GD = 〈V,ED,D〉 is the graph associated with
the affinity matrix D = A2−A1. Thus, ED = {(u,v) |D(u,v) 6=
0}. We also define the graph that contains only edges with
positive weights as GD+ = 〈V,ED+ ,D+〉, where ED+ = {(u,v) |
D(u,v)> 0}. Fig. 1 gives an example of G1, G2, GD and GD+ .
It is easy to verify that Eq. 3 is equivalent to

max
S⊆V

ρD(S) =
WD(S)
|S|

(5)

where WD(S) is the total degree of S in GD. Also, Eq. 4 is
equivalent to

max
x∈4n

fD(x) = x>Dx (6)

The major difference between finding dense subgraphs in
a difference graph GD and the traditional dense subgraph
detection problems is that there are negative edge weights in
a difference graph. In Sections IV and V we will analyze how
negative edge weights affect properties and algorithms of dense
subgraph mining problems.

Also, from Eq. 5 and Eq. 6 we can see that the optimal
value is positive if and only if the matrix D has at least one
positive entry, that is, the difference graph has at least one
edge with potisive weight. If D does not have positive entries,
the optimal values to Eq. 5 and Eq. 6 are both 0, the optimal S
to Eq. 5 contains one single vertex, and the optimal x to Eq. 6
has only one entry that equals 1 and all other entries 0.

C. Why not Ratio of Difference?

Instead of the absolute value of density difference, why
don’t we consider the ratio of density difference, i.e. ρ2(S)

ρ1(S)

or f2(x)
f1(x)

, as the objective? The reason is that the ratio of
density difference sometimes is not well-defined or has trivial
solutions. Consider a single vertex u as a subgraph. Its densities
in G1 and G2 are both 0 so the ratio of density difference is
0
0 . Also, in Fig. 1, the edge (v1,v2) has density ratio +∞ since
it only appears in G2 but not G1.

D. Generalization of the Difference Graph

In Sections IV and V we will introduce our DCS finding
algorithms that can take any weighted graphs as input, where
the weight of an edge can be positive or negative. Thus, the
definition of the difference graph of G1 = 〈V,E1,A1〉 and G2 =
〈V,E2,A2〉 is not restricted to the graph whose affinity matrix
is A2−A1. For example, we can set the difference graph as
GD = 〈V,ED,D = A2−αA1〉 and maximizing ρD(S) (or fD(x))
is equivalent to finding S (or x) such that ρ2(S) ≥ αρ1(S)
(or f2(x) ≥ α f1(x)), and ρ2(S)−αρ2(S) (or f2(x)−α f1(x))
is maximized. This is similar to the optimal α-quasi-clique
problem [24]. Also, when there is one edge in the difference
graph whose weight is much heavier than all the other edges,
such an edge itself is very possible to be the optimal subgraph.
To avoid this, for edges with too heavy weights in GD, we can
adjust their weights such that they are not too much heavier
than other edge weights in GD. Then the DCS extracted usually
will become larger in size.

IV. DCS WITH RESPECT TO AVERAGE DEGREE

In this section, we first explore some key properties of
the DCSAD problem. Then, we devise an efficient greedy
algorithm with a data-dependent ratio.

A. Complexity and Approximability

Like traditional dense subgraph discovery problem, the
DCSAD prefers “connected” subgraphs, of course, in the
difference graph GD.

Property 1. Let GD be the difference graph of G1 and G2.
For any S ⊆ V , if GD(S) is not a connected subgraph, then
there exists a set S′ ⊆ S such that GD(S′) is connected and the
density difference ρD(S′)≥ ρD(S).

Proof: Without loss of generality, we assume GD(S)
has two connected components GD(S1) and GD(S2), where
S1 ∪ S2 = S and S1 ∩ S2 = /0. Clearly, WD(S) = WD(S1) +
WD(S2) because GD(S1) and GD(S2) are isolated. So we
have ρD(S) =

WD(S)
|S| = |S1|

|S| ρD(S1) +
|S2|
|S| ρD(S2), which means

ρD(S) is a convex combination of ρD(S1) and ρD(S2). Thus,
ρ(S) = WD(S)

|S| ≤max{ρD(S1),ρD(S2)}

Traditional dense subgraph discovery with respect to av-
erage degree can be solved in polynomial time [12], and has
an efficient 2-approximation algorithm [7]. Unfortunately, our
problem does not have the same computational properties.

Theorem 1. The DCSAD (Eq. 5) problem is NP-hard.

Proof: We prove this by a reduction from the maximum
clique problem, which is known NP-hard. Given an instance
of the maximum clique problem, which is an undirected and
unweighted graph G = 〈V,E〉, we build two graphs G1 and G2
as the input of the DCSAD problem. Let E1 = {(u,v) | (u,v)∈
V ×V ∧ u 6= v∧ (u,v) /∈ E}. We set G1 = 〈V,E1,A1〉 and for
every edge (u,v) ∈ E1, we set the weight A1(u,v) = |E|+ 1.
Clearly building G1 and G2 can be done in polynomial time
w.r.t. the size of G. We set G2 = 〈V,E2,A2〉 where E2 = E. For
every edge (u,v) ∈ E2, we set the weight A2(u,v) = 1.

It is obvious that for any S ⊆ V , the density difference
W2(S)
|S| −

W1(S)
|S| < 0 if G1(S), the induced subgraph of S in G1,

contains at least one edge in E1. Thus, the optimal S must
satisfy that G1(S) does not contain any edges in E1. Due to
the definition of E1, G2(S), the induced subgraph of S in G2 is
a clique. So the optimal density difference is |S|−1 where S is
the maximum clique in G2. Because G2 and G actually are the
same, the optimal density difference of G2 and G1 is at least
k−1 if and only if G contains a clique with at least k vertices.
Due to the NP-hardness of the maximum clique problem, the
DCSAD problem is also NP-hard.

The DCSAD problem is not only NP-hard but also hard to
approximate under reasonable complexity assumptions.

Corollary 1. Assuming P6=NP, the DCSAD problem (Eq. 5)
cannot be approximated within O(n1−ε) for any ε > 0.

Proof: We still use our reduction in the proof of Theo-
rem 1. We already proved that the optimal density difference
is k−1 where k is the size of the maximum clique in G. Also,
it is easy to see that if a DCSAD algorithm returns a value
k′−1 such that k−1

k′−1 ≤ β , there is a k′-clique in G. Since k≥ k′,
k
k′ ≤

k−1
k′−1 ≤ β . Thus, if DCSAD can be approximated within

β , so is the maximum clique problem.

It is known that the maximum clique problem cannot be
approximated within O(n1−ε) for any ε > 0, assuming P 6=NP.
Thus, if P6=NP, the DCSAD problem (Eq. 3) cannot be
approximated within O(n1−ε) for any ε > 0.

B. Greedy Algorithms

Although DCSAD cannot be approximated within
O(n1−ε), an O(n) approximation is easy to achieve. We have
two cases,

1) If there are no edges with positive weights in GD, appar-
ently any S that only contains a single vertex is an optimal
solution to the DCSAD problem, and the optimal density
difference is 0.

2) If GD has at least one edge with positive weight, S =
{u,v} is an O(n) approximation solution, where (u,v) =
argmax(u,v)∈ED D(u,v). The reason is as follows. For any
S′ ⊆ V , ρD(S′) must be no greater than the density of
an n-clique where every edge’s weight is D(u,v). Such
an n-clique has density (n−1)D(u,v). Note that ρD(S) =
D(u,v). Thus, ρD(S)

maxS′⊆V ρD(S′)
≥ n−1 = O(n).

Utilizing the above results, and inspired by the greedy
approximation algorithm (shown in Algorithm 1) for the
traditional dense subragph discovery problem [7], we devise
an O(n) approximation algorithm, the DCSGreedy algorithm
(Algorithm 2), which also has a data-dependent ratio.

The idea of the Algorithm 2 is to generate multiple
potentially good solutions and pick the best one. As discussed
above, when GD has positive weighted edges, the edge (u,v)
with the maximum weight is a candidate solution since it is

1
n−1 -optimal. The Greedy algorithm may also generate a good
solution, although for the DCSAD problem its approximation
ratio is no better than O(n1−ε) for any ε > 0. Thus, we run
Algorithm 1 on GD to generate S1. We also run Algorithm 1 on
GD+ to get S2, because not only S2 may be a better solution,
but also ρD+(S2), the average degree of S2 in GD+ , helps us
derive a data-dependent ratio of Algorithm 2, which will be
shown in Theorem 2. In line 9 of Algorithm 2, CCD(S) is
the set of connected components of GD(S), where a connected
component is represented by a set of vertices. Line 9 is for
refining the solution S obtained at line 7 when GD(S) is not
connected, since DCSAD prefers “connected” subgraphs.

Theorem 2. The S returned by Algorithm 2 has a data-
dependent ratio of 2ρD+ (S2)

ρD(S)
, where S2 is the set in line 6 of

Algorithm 2.

Proof: It is known that ρD+(S2) is a 2-approximation of
the maximum density in GD+ [7]. For any S′ ⊆ V , clearly
ρD(S′) ≤ ρD+(S′). Thus, the maximum density in GD is at
most 2ρD+(S2) and the S returned by Algorithm 2 has a data-
dependent ratio of 2ρD+ (S2)

ρD(S)
.

We analyze the time complexity of Algorithm 2. Suppose
|V |= n, |E1|=m1 and |E2|=m2. The difference graph GD can
be built in O((m1 +m2) logn+n) time, if we sort the adjacent
lists of G1 and G2 first, and use then a merge sort to build u’s
adjacent list in GD for each u∈V . Finding the maximum edge
weight can be done in O(m1 +m2) time since GD has at most
m1+m2 edges. Running the Greedy algorithm on a graph G =
〈V,E,A〉 can be finished in O((|E|+ |V |) log |V |) time, if we
adopt a segment tree [3] to store the current degrees of vertices
in S1. Thus, Greedy(GD) and Greedy(GD+) together can be
done in O((m1 +m2 +n) logn) time. Lines 8 and 9 obviously

Algorithm: Greedy
Input: G = 〈V,E,A〉
Output: S

1: S←V , S1←V
2: while |S1| ≥ 1 do
3: if W (S1)

|S1| >
W (S)
|S| then

4: S← S1
5: i← argmin j∈S1 W (j;G(S1))
6: S1← S1 \{i}
7: return S

Algorithm 1: Greedy Algorithm.

Algorithm: DCSGreedy
Input: G1 = 〈V,E1,A1〉, G2 = 〈V,E2,A2〉
Output: S, and a data-dependent ratio β

1: Build the difference graph GD = 〈V,ED〉
2: if GD does not have edges with positive weights then
3: Randomly pick a vertex v
4: return S←{v}
5: (u,v)← argmax(u,v)∈ED

D(u,v)
6: S←{u,v}, S1←Greedy(GD) , S2←Greedy(GD+)

7: S← argmaxS′∈{S,S1,S2}
WD(S′)
|S′|

8: if GD(S) is not connected then
9: S← argmaxS′∈CCD(S)

WD(S′)
|S′|

10: return S and β ← 2ρD+ (S2)
ρD(S)

Algorithm 2: DCSGreedy algorithm for solving DCSAD.

can be done in O(m1+m2+n) time. Thus, in total Algorithm 2
can be efficiently implemented in O((m1+m2+n) logn) time.

V. DCS WITH RESPECT TO GRAPH AFFINITY

In this section, we first explore several properties of the
DCSGA problem. Then, we devise a Coordinate-Descent
algorithm which is guaranteed to converge to a KKT point.
We also propose a refinement step to further improve a KKT
point solution. Since DCSGA is non-concave, normally we
need multiple initializations to find a good solution. To reduce
the number of initializations, we utilize a smart initialization
heuristic. Combining the Coordinate-Descent algorithm, the
refinement step and the smart initialization heuristic together,
we have our NewSEA algorithm for the DCSGA problem.

A. Properties

We first show that, like the DCSAD problem, DCSGA also
prefers connected subgraphs in the difference graph GD.

Property 2. Let GD = 〈V,ED,D〉 be the difference graph of
G1 and G2. For any x ∈ 4n such that fD(x) = x>Dx ≥ 0, if
GD(Sx) is not connected, where Sx is the support set of x,
then there exists x′ whose support set Sx′ ⊆ Sx, and GD(Sx′) is
connected, and fD(x′)≥ fD(x).

Proof: Without loss of generality, we assume GD(S)
has two connected components GD(S1) and GD(S2), where
S1 ∪ S2 = S and S1 ∩ S2 = /0. We decompose x such that
x = y + z, where Sx = S1 and Sy = S2. Because S1 and S2
are two connected components in GD(S), we have y>Dz = 0.
Thus, x>Dx = (y + z)>D(y + z) = y>Dy + z>Dz. Let y′ =

y
|y|1

and z′ = z
|z|1

. Clearly, y′ ∈ 4n and z′ ∈ 4n. So both

y′ and z′ are subgraph embeddings. Thus, we have fD(x) =
x>Dx = |y|21 fD(y′) + |z|21 fD(z′). Since x>Dx ≥ 0 and both
|y|21 and |z|21 are non-negative, max{ fD(y′), fD(z′)} ≥ 0. Also
|y|1 + |z|1 = |x|1 = 1, so |y|21 + |z|21 ≤ 1. We get that fD(x) ≤
(|y|21 + |z|21)max{ fD(y′), fD(z′)} ≤max{ fD(y′), fD(z′)}.

The DCSGA is a standard Quadratic Programming (QP)
problem, which in general is NP-hard. We prove that DCSGA
is NP-hard.

Theorem 3. The DCSGA (Eq. 6) problem is NP-hard.

Proof: Consider an undirected and unweighted graph G
whose adjacency matrix is A, where the entries of A are either
0 or 1. It is known that maximizing x>Ax s.t. x ∈4n is NP-
hard, because the optimum is 1− 1

k , where k is the size of the
maximum clique of G [20]. Given an arbitrary undirected and
unweighted graph G, we create a corresponding instance of
the DCSGA problem by building G1 as a graph without any
edges and setting G2 = G. Clearly for any x ∈ 4n, we have
x>Ax = x>Dx, where D is the affinity matrix of the difference
graph between G2 and G1. Thus, this simple reduction proves
that the DCSGA problem is also NP-hard.

B. The SEACD Algorithm

Since DCSGA is NP-hard and is a QP, we employ local
search algorithms to find good solutions. Because the density
difference x>Dx is normally non-concave, we seek for x that
satisfies the Karush-Kuhn-Tucker (KKT) conditions [5], which
are necessary conditions of local maxima points. It is easy to
derive that, if x is a KKT point of the DCSGA problem, it
should satisfy

∇u fD(x) = 2(Dx)u

{
= λ xu > 0
≤ λ xu = 0

∀u ∈V (7)

where ∇u fD(x∗) is the partial derivative with respect to xu,
and (Dx∗)u is the u-th entry of the vector Dx∗. Since x ∈4n,
when Eq. 7 holds, we have fD(x) = ∑u∈V xu ∗ (Dx)u =

λ

2 .

The condition in Eq. 7 is also equivalent to

max
k:xk<1

∇k fD(x)≤ min
k:xk>0

∇k fD(x) (8)

The Shrink-and-Expansion (SEA1) algorithm in [18] uti-
lizes a replicator dynamic to solve the problem that maximizes
x>Ax s.t. x∈4n, where A is an affinity matrix of an undirected
graph. Although D in Eq. 6 can also be regarded as an affinity
matrix, unfortunately the SEA algorithm cannot be directly
applied to our problem. This is because the replicator dynamic
can only deal with non-negative matrices, while in our problem
the matrix D may have negative entries. Thus, we devise a 2-
Coordinate Descent algorithm to solve Eq. 6.

In every iteration of the 2-Coordinate Descent algorithm,
we only pick two variables xi and x j, and fix the rest n− 2
variables. We adjust the values of xi and x j to increase
the objective fD(x) without violating the simplex constraint.
Suppose xi + x j = C, and let bi = ∑a∈ND(i),a6= j D(a, i)xa, b j =
∑a∈ND(j),a6=i D(a, j)xa, where ND(i) is the set of i’s neighbors
in GD. We adjust xi and x j by solving a simple optimization

1The details of SEA algorithm are illustrated in Appendix.

problem involving only one variable, since x j should always
equal C−xi when the rest n−2 variables are fixed. Specifically,
the optimization problem is

max
1
2

fD(x) = g(xi) = bixi +b j(C− xi)+D(i, j)xi(C− xi)+Cnst

s.t. 0≤ xi ≤C
(9)

where Cnst is a constant independent from xi and x j.

Eq. 9 can be solved analytically. There are two cases,

1) D(i, j) = 0, which means i and j are not adjacent in the
difference graph GD. Then g(xi) = (bi − b j)xi + b jC +
Cnst. Obviously we should set xi =C if bi > b j, and set
xi = 0 if bi < b j. We do not adjust bi or b j if bi = b j.

2) D(i, j) 6= 0, which means i and j are adjacent in GD.
We have g(xi) =−D(i, j)x2

i +Bxi+b jC+Cnst where B=
D(i, j)C + bi− b j. Let r = B

2D(i, j) . If 0 ≤ r ≤ C, we set
xi = argmaxx∈{0,r,c} g(x). If r < 0 or r > C, we set xi =
argmaxx∈{0,C} g(x).

To pick xi and x j for an iteration, we exploit the par-
tial derivatives. We pick i = argmaxk:xk<1 ∇k fD(x) and j =
argmink:xk>0 ∇k fD(x). If ∇i fD(x)≤∇ j fD(x), which means we
reach a KKT point, the algorithm stops.

The 2-Coordinate Descent algorithm is guaranteed to con-
verge to a stationary point, which is equivalent to a KKT point
because the constraint x ∈4n in Eq. 6 is linear [5].

Picking xi and x j at the beginning of every iteration clearly
can be done in O(n) time. But O(n) may still be too costly
for large graphs. Thus, to further improve the efficiency of our
algorithm, we adopt the strategy of the Shrink-and-Expansion
algorithm. We define a local KKT point on S⊆V as a point
x ∈4n that satisfies the following conditions,

xu = 0 i f u /∈ S

∇u fD(x) = 2(Dx)u

{
= λ xu > 0
≤ λ xu = 0

∀u ∈ S

λ = 2 fD(x)

(10)

where the major difference from Eq. 7 is that only the vertices
in S⊆V are considered. It is also equivalent to

max
k∈S:xk<1

∇k fD(x)≤ min
k∈S:xk>0

∇k fD(x) (11)

The 2-Coordinate Descent algorithm is guaranteed to converge
to a local KKT point on S, when we keep xu = 0 for every
u /∈ S, and xu is involved in iterations only when u ∈ S.

Algorithm 3 shows our method. We start with an initial
embedding x ∈ 4n. Line 3 is the Shrink stage, since after
calling the 2-coordinate descent algorithm, the support set of
x may shrink due to some originally positive xi is set to 0.
Line 6 is the start of the expansion stage. We first enlarge S
by adding to S the vertices whose partial derivatives are greater
than λ = 2 fD(x), and then do exactly the same expansion
operation of the original SEA algorithm [18] (see Appendix).
If Z in Line 6 is empty, the current x is already a KKT point
satisfying conditions in Eq. 7 and the SEA iterations stop.

Like the original SEA algorithm [18], The SEACD algo-
rithm converges to a KKT point.

Algorithm: SEACD
Input: GD, an initial embedding x ∈4n

Output: x
S← Sx
while true do

Use the 2-Coordinate Descent algorithm and take x as the
initial value to find a local KKT point xnew on S
x← xnew

S←{v | xv > 0}, λ ← 2 fD(x)
Z←{i | ∇i fD(x)> λ , i ∈V}
if Z = /0 then

break
Do the SEA Expansion operation on S∪Z to adjust x
S← Sx

return x
Algorithm 3: Coordinate Descent SEA Algorithm.

Theorem 4. The SEACD algorithm (Algorithm 3) is guaran-
teed to converge to a KKT point.

We analyze the computational cost of Algorithm 3. It is
worth noting that to efficiently run Algorithm 3, the initial
embedding x should have a small support set such that during
the execution of Algorithm 3, S and Z in the while loop are
normally small sets. In the Shrink stage, for every iteration,
we need O(|S|) time to pick xi and x j, O(1) time to adjust
xi and x j, and O(|ND(i)|+ |ND(j)|) time to update the partial
derivatives of the vertices affected by adjusting xi or x j. S
is usually a small set and |ND(i)|+ |ND(j)| is often a small
number since real-world graphs are normally sparse. Thus, the
cost of each iteration of the shrink stage is low. In Line 6
of the Expansion stage, we only need to check the partial
derivatives of the vertices that have at least one neighbor in S,
since the partial derivatives of all other vertices are 0. Thus,
the cost of Line 6 is ∑v∈S |ND(v)|. Line 9 is the same as
the Expansion operation of the SEA algorithm, whose cost
is O(∑v∈S∪Z |ND(v)|) [18]. Since both S and Z are normally
small sets, the cost of one SEA iteration (one Shrink stage +
one Expansion stage) is low.

C. Refining a KKT Point Solution

After a KKT point solution is reached, we may further
improve the solution. We call a clique in GD as a positive
clique if all its edge weights are positive, and x∈4n a positive
clique solution if GD(Sx) is a positive clique. Utilizing the
2-Coordinate Decent algorithm, we give a construction that
refines a KKT point x such that G(Sx) is not a positive clique
to a better solution.

Theorem 5. For any KKT point x, let Sx = {v | xv > 0}. If
GD(Sx) is not a positive clique, we can find a y such that
GD(Sy) is a positive clique and fD(y) ≥ fD(x), where Sy =
{v | yv > 0} and Sy ⊆ Sx.

Proof: Suppose x is a KKT point and GD(Sx) is not a
positive clique. We pick xi and x j from Sx such that D(i, j)≤ 0.

If D(i, j) = 0, since ∇i fD(x) = ∇ j fD(x), we have (Dx)i =
(Dx) j which means ∑a∈ND(i) D(a, i)xa = ∑a∈ND(j) D(a, j)xa.
Thus, bi = b j in Eq. 9 and we have g(xi) = b jC+Cnst. Note
that b jC is independent of xi and x j, as long as xi + x j = C.

Algorithm: Refinement
Input: GD+ , a KKT point x
Output: y

1: y← x
2: while GD+(Sy) is not a clique do
3: Pick u and v such that (u,v) is not an edge in GD+

4: yu← yu + yv, yv← 0
5: Use the 2-Coordinate Descent algorithm and take y as the

initial value to find a local KKT point ynew on Sy
6: y← ynew

7: return y
Algorithm 4: Refining a KKT point.

We set xi =C and x j = 0 to remove vertex j from the current
subgraph, and the objective fD(x) remains the same.

If D(i, j)< 0, we solve the optimization problem in Eq. 9.
Apparently g(xi) is a convex function with respect to xi because
−D(i, j)> 0. To maximize the objective g(xi), we should set
xnew

i = argmaxx∈{0,C} g(x). Thus, after solving Eq. 9, either xi
or x j becomes 0 and the objective fD(x) is improved.

Thus, if GD(Sx) is not a positive clique, we can always
remove one vertex i (by setting xi = 0) that is incident to an
edge with negative weight or is not adjacent to all other vertices
in Sx, and keep the objective non-decreasing. Suppose after
removing this vertex we get y. We use the 2-coordinate descent
algorithm to adjust y to a local KKT point on Sy, and obviously
the objective fD(y) is not decreased. If GD(Sy) is still not a
positive clique, we repeat the above procedure of removing
one vertex and adjusting to a local KKT point. During this
process, the support set shrinks if the current solution is not
a positive clique solution. Since the support set cannot shrink
forever (it should has at least 1 vertex), finally we will reach a
positive clique solution y such that Sy ⊆ Sx. Moreover, during
the process of reaching y, the objective is non-decreasing.
Thus, we have fD(y)≥ fD(x).

Since an optimal x must be a KKT point, Theorem 5
implies that there exist a solution y ∈ 4n such that y is an
optimal solution to Eq. 6, and GD(Sy) is a positive clique in
GD. Note that a positive clique in GD is a clique in GD+ .
Thus, we can run Algorithm 3 directly on GD+ instead of
GD to get a solution x. If GD+(Sx) is not a clique in GD+ ,
we use the construction in the proof of Theorem 5 to find
a new solution y whose GD+(Sy) is a clique. Algorithm 4
shows the construction, where we do not consider the case
when D+(i, j)< 0 since D+ only has non-negative entries.

Since the edges with negative weights can be ignored, it
seems we can run the original SEA algorithm [18] on GD+

directly to find DCS. However, SEA in [18] is not guaranteed
to return a positive clique solution x. If GD+(Sx) is not a clique,
GD(Sx) may have some edges with negative weights and x is
definitely not an optimal solution. This is because according
to the proof of Theorem 5, if D(i, j) < 0 where xi > 0 and
x j > 0, we can solve the optimization problem in Eq. 9 over
xi and x j to further improve the objective. Therefore, we still
need our refinement step (Algorithm 4).

Always returning a positive clique solution as the DCS
is one advantage of adopting graph affinity as the density
measure, since the returned DCS has very good interpretability.

From G1 to G2, for every pair of vertices in the DCS, their
connection is enhanced.

Please note that, although there exists an optimal solution
x such that GD(Sx) is a positive clique, it does not mean a
maximum clique finding algorithms like [22] can be applied
to solve the DCSGA problem. The major reason is that GD
in the DCSGA problem is a weighted graph while maximum
clique finding algorithms deal with unweighted graphs.

Advantages of the Coordinate-Descent SEA With the help
of the refinement step (Algorithm 4), the original SEA al-
gorithm [18] works for the DCSGA problem. However, our
Coordinate-Descent SEA algorithm has some advantages over
the original SEA algorithm. The correctness of the Expansion
operation (see Appendix) depends on that a local KKT point
is reached in the Shrink stage. Thus, when implementing the
Shrink stage, the correct condition of convergence should be
maxk∈S:xk<1 ∇k fD(x)−mink∈S:xk>0 ∇k fD(x)≤ ε , where S is the
set of vertices on which we try to find a local KKT point, and ε

is the parameter of precision. However, the original SEA [18]
adopts fD(x)− fD(xold) ≤ ε as the convergence condition,
where x and xold are the solutions after and before a Shrink
iteration by the replicator dynamics. In Section VI, we will
show that such a convergence condition may fail to achieve a
local KKT point and as a result, the objective fD(x) is even
reduced in the following Expansion stage. Moreover, when the
convergence condition of the Shrink stage is correctly set, the
replicator dynamics of the original SEA [18] converges much
slower than the coordinate-descent method, especially on dense
graphs. Since our algorithm can also deal with graph with only
positive edge weights, it is also a competitive solution to the
traditional graph affinity maximization problem.

D. Smart Initializations of x

One problem remaining unsettled is how to choose the ini-
tial embedding x for running Algorithm 3. Since the DCSGA
problem is non-concave, we adopt the strategy of multiple
initializations, that is, we run Algorithm 3 multiple times with
different initial embeddings. The best solution generated in all
runs is returned as the final solution. For the interest of effi-
ciency of the SEACD algorithm as illustrated in Section V-B,
an initial embedding x should have a small support set.

One simple way of initialization is to set x = eu, where
in eu, only the u-th entry is 1 and all other entries are 0.
The original SEA algorithm employs this simple method and
it uses every vertex u ∈ V to set the initial embedding [18].
Thus, in [18], the SEA algorithm is called n = |V | times.

For large graphs, O(n) initializations are clearly very time-
consuming. We adopt a smart heuristic to reduce the number of
initializations. The major idea is to first find an upper bound µu
for each u ∈V , where µu is the upper bound of x>Dx for any
x∈4n such that xu > 0 and GD+(Sx) is a clique. Then we only
use the vertices with big upper bounds to do initializations.

Define the ego net of u in GD+ as GD+(Tu) where Tu is
the set containing u and all u’s neighbors in GD+ . Let wu =
maxi∈Tu∨ j∈Tu D+(i, j). Clearly, wu is an upper bound of the
maximum edge weight in u’s ego net. Using O(|ED+ |) time,
we compute wu for every u ∈V .

Algorithm: NewSEA
Input: GD+

Output: y
1: y← 0
2: Compute wu, τu for every u ∈V
3: Compute µu =

τuwu
τu+1 for every u ∈V

4: Sort V in descending order of µu
5: for u ∈V do
6: if µu ≤ fD(y) then
7: break
8: Set x such that xu = 1 and xv = 0 for all v 6= u
9: x← SEACD(GD+ ,x)

10: x← Refinement(GD+ ,x)
11: if fD(x)> fD(y) then
12: y← x
13: return y

Algorithm 5: The NewSEA algorithm for solving DCSGA.

Theorem 6. For any u ∈ V , x>Dx ≤ (k−1)wu
k , where x ∈ 4n

and GD+(Sx) is a k-clique containing u, and wu is an upper
bound of the maximum edge weight in GD+(Tu), the ego net
of u in GD+ .

Proof: Suppose for x ∈ 4n, GD+(Sx) is a k-clique
containing u. Thus, x>D+x = ∑(i, j)∈ED+ (Sx) xix jD+(i, j) =

x>Dx. Since GD+(Sx) is a k-clique containing u, for
any (i, j) ∈ ED+(Sx), D(i, j) ≤ wu. Therefore, x>Dx ≤
wu ∑(i, j)∈ED+ (Sx) xix j. When GD+(Sx) is a k-clique, it is easy
to find that ∑(i, j)∈ED+ (Sx) xix j ≤ ∑(i, j)∈ED+ (Sx)

1
k

1
k = k−1

k . Thus,

x>Dx≤ (k−1)wu
k .

Based on Theorem 6, assuming ku is the size of the
maximum clique in GD+ that contains u, then xT D+x is no
more than (ku−1)wu

ku
, where x ∈ 4n, xu > 0 and GD+(Sx) is a

clique. Although computing ku for every u ∈V is NP-hard, it
is easy to find an upper bound of ku, which is τu +1 where τu
is the core number of u in GD+ [22]. Thus, we use µu =

τuwu
τu+1

as the upper bound of the affinity of a clique in GD+ that
contains u. Note that computing τu for every u ∈ V can be
done in O(|ED+ |) time [22].

We sort all vertices in V in the descending order of µu.
Then we use the new order of vertices to initialize x. Suppose
we have tried some vertices and y is the current best solution.
Then all vertices v such that µv ≤ fD(y) will not be used to
initialize x. In such a case, normally we only need to do a
small number of initializations.

Note that when we use a vertex u to initialize x, it is not
guaranteed that after running the SEACD algorithm and the
Refinement algorithm a solution x is returned where xu > 0.
It is possible that xu = 0 in the returned solution x. Thus,
our method for reducing the number of initializations is not a
pruning technique, but a heuristic. In Section VI we show that
our smart initialization heuristic is very effective and it never
impairs the quality of the final solution x compared to trying
all vertices for initializations in experiments.

Combining all results in this section, we propose the
NewSEA algorithm shown in Algorithm 5.

VI. EXPERIMENTS

In this section, we report a series of experiments to verify
the effectiveness and efficiency of our algorithms.

A. Algorithms and Datasets in Experiments

For the DCSAD problem, we tested our DCSGreedy
algorithm, the Greedy algorithm on GD (denoted by GD
only) and the Greedy algorithm on GD+ (denoted by GD+

only). For the DCSGA problem, we tested our NewSEA
algorithm, our SEACD algorithm plus the Refinement step
but without our smart initializations heuristic (denoted by
SEACD+Refine), and the original SEA algorithm [18] plus the
Refinement step (denoted by SEA+Refine). All DCSGA algo-
rithms were run on GD+ directly. The convergence condition of
the Shrink stage in NewSEA and SEACD+Refine are all set to
maxk∈S:xk<1 ∇k fD(x)−mink∈S:xk>0 ∇k fD(x)≤ 10−2 ∗ 1

|S| , where
S is the current set on which we want to reach a local KKT
point. This convergence condition very often is too difficult
to achieve for the replicator dynamic in the Shrink stage
of SEA+Refine, because the replicator dynamic converges
too slowly. Thus, for the Shrink stage in SEA+Refine, the
convergence condition was set to that the improvement of
the objective fD(x) is less than 10−6 after one iteration. As
pointed out in Section V-C, this convergence condition actually
is not enough for achieving a local KKT point. Thus, in our
experiments, the Shrink stage of SEA+Refine sometimes could
not converge to a local KKT point and as a result, in the
following Expansion stage error occurred, the objective fD(x)
was even reduced after expansion.

We list the statistics of all data sets used in our experiments
in Table II. The setting of “Weighted” represents that we built
GD as G2−G1 directly. In some graphs there are several edges
with weights significantly greater than the weights of other
edges, they make the DCS with respect to graph affinity a very
small subgraph, sometimes even a single edge. Thus, to limit
the influence of these small number of edges with too heavy
weights, we also tried the Discrete setting, where we set edge
weights in GD discrete values such that the maximum weight
is not too much greater than the other edge weights. Details of
how to set edge weight in the Discrete Setting and “GD Type”
are illustrated in each task in the rest of this section.

B. Finding Emerging and Disappearing Co-author Groups

We applied DCS to find emerging/disappearing co-author
groups from co-author networks. We adopted the DBLP dataset
(https://static.aminer.org/lab-datasets/citation/dblp.v8.tgz) and
extracted all papers published in the top conferences according
to the CS Ranking website (http://csrankings.org/). Based on
these papers, we built two co-author graphs. The first graph
G1 = 〈V,E1,A1〉 contains the co-authorships before the year
of 2010, and the second one G2 = 〈V,E2,A2〉 contains the
co-authorships from 2010 to 2016. For an edge linking two
authors in a co-author graph, the weight is the number of
papers written by these two authors together.

To build the difference graph GD = 〈V,ED,D〉, we tried
two settings, the Weighted setting and the Discrete setting.
In the Weighted setting, we set D(u,v) = A2(u,v)−A1(u,v),
which is the standard setting of the DCS problem. In the
Discrete setting, the entries of D are set to discrete values.

Specifically, if A2(u,v)−A1(u,v) ≥ 5, which means u and v
have at least 5 more co-authored papers in G2 than in G1,
we set D(u,v) = 2. If 2 ≤ A2(u,v)− A1(u,v) < 5 , we set
D(u,v) = 1. If −4 < A2(u,v)−A1(u,v)< 0, we set D(u,v) =
−1. If A2(u,v)−A1(u,v)≤−4, we set D(u,v) =−2. The two
different settings of GD normally lead to different DCS.

Running our DCS algorithms on GD described above, no
matter in Weighted setting or Discrete Setting, what we find
is the Emerging co-author group whose strength (density) of
collaborations was enhanced after 2010. Thus, the type of GD
described above is called Emerging. We also wanted to mine
the disappearing co-author group whose collaboration strength
was weakened the most after 2010. Therefore, we tried another
type of GD, the Disappearing GD, which was obtained by
flipping the sign of weight of each edge in the Emerging GD.

It turned out that, under the same GD and the same density
measure, all algorithms find the same group of authors. We
list all co-author groups obtained in Table III. If a group is
found under the graph affinity measure, the weight (in the
simplex) of each author is also given. We give a short note
on the affiliation/address and research interest of each group.
Table IV reports the groups found under different settings and
density measures. For the average degree measure, we also
report the approximation ratio 2ρD+ (S2)

ρD(S)
. For each group, we

report its density differences under the two measures. Note
that, for x under the graph affinity measure, its average degree
is WD(Sx)

|Sx| . We also report the edge density difference, defined

as WD(S)
|S|2 of each co-author group, since edge density can be

regarded as a discrete version of graph affinity.

The results show that the research topics of the emerging
groups are machine learning and security, which both are hot
topics in recent years. As to the disappearing groups, Compiler
& Software System are all relatively mature areas of computer
science, and, for the 3 Japanese Robotics research groups, it
is known that recently Japanese researchers do not publish as
many papers in international conferences as they did before.

C. Mining Emerging and Disappearing Data Mining Topics

Using the same DBLP dataset, we extracted titles of papers
published in some famous Data Mining venues including
KDD, ICDM, SDM, PKDD, PAKDD, TKDE, TKDD and
DMKD. Similar to [1], we built keyword association graphs
from the paper titles. Unlike [1], we tried to identify emerg-
ing and disappearing data mining topics during 2008-2017,
compared to the time period 1998-2007. Thus, we split all
paper titles in two parts according to their publication years,
and built two keyword association graphs G1 (for 1998-2007)
and G2 (for 2008-2017). We removed all stop words and used
the rest words in these paper titles as keywords. The edge
weights of G1 and G2 were set based on the pairwise co-
occurrences of keywords as suggested by [1]. Specifically, for
an edge between two keywords, we set its weight as 100 times
the percentage of paper titles containing both the keywords.
Statistics of the difference graphs can be found in Table II
(the DM dataset).

This time again all DCSGA algorithms found the same
emerging topic {social (0.5), networks (0.5)} and the same
disappearing topic {mining (0.12), association (0.44), rules

Data Setting GD Type n m+ m− Max w Min w Average w
DBLP Weighted Emerging 22,572 61,703 61,551 46 -100 -0.015
DBLP Weighted Disappearing 22,572 61,551 61,703 100 -46 0.015
DBLP Discrete Emerging 22,572 21,367 61,551 2 -2 -0.518
DBLP Discrete Disappearing 22,572 61,551 21,367 2 -2 0.518
DM — Emerging 9890 140,705 67,541 1.988 -5.997 0.0007
DM — Disappearing 9890 67,541 140,705 5.997 -1.988 -0.0007
Wiki — Consistent 116,836 762,999 1,264,872 9.619 -12.46 -0.474
Wiki — Conflicting 116,836 1,264,872 762,999 12.46 -9.619 0.474

Movie — Interest−Social 55,710 338,524 914,292 1 -1 -0.46
Movie — Socia−Interest 55,710 914,292 338,524 1 -1 0.46
Book — Interest−Social 55,710 124,027 918,925 1 -1 -0.762
Book — Social−Interest 55,710 918,925 124,027 1 -1 0.762

DBLP-C Weighted — 1,282,461 2,538,746 2,359,487 400 -186 0.188
DBLP-C Discrete — 1,282,461 2,538,746 2,359,487 2 -2 -0.013

Actor Weighted — 382,219 15,038,083 0 216 1 1.101
Actor Discrete — 382,219 15,038,083 0 10 1 1.098

TABLE II. STATISTICS DIFFERENCE GRAPHS IN EXPERIMENTS (n represents #vertices, m+ is #edges with positive weights and m− is #edges with
negative weights. “Max w” is the maximum edge weight while “Min w” is the minimum one. We also report the average edge weight in the column of

“Average w”. “Setting” and “GD Type” denote how the difference graph was built. “GD Type” denotes which graph is used as G1 and which is used as G2.)

List of Authors Note
Feiping Nie(0.4428), Heng Huang(0.462), Chris H. Q. Ding(0.0230), Hua Wang(0.0717) UTA Machine Learning
Lorrie Faith Cranor(0.1428), Nicolas Christin(0.1428), Blase Ur(0.1428), Richard Shay(0.1428), Saranga Komanduri(0.1428),
Michelle L. Mazurek(0.1428), Lujo Bauer(0.1428)

CMU Privacy & Security

Kensuke Harada, Kiyoshi Fujiwara, Fumio Kanehiro, Hirohisa Hirukawa, Shuuji Kajita, Kenji Kaneko Japan Robotics 1
Toshio Fukuda(0.5), Fumihito Arai(0.5) Japan Robotics 2
Fumio Kanehiro(0.1428), Shuuji Kajita(0.1428), Kenji Kaneko(0.1428), Kensuke Harada(0.1428), Kiyoshi Fujiwara(0.1428),
Hirohisa Hirukawa(0.1428), Mitsuharu Morisawa(0.1428)

Japan Robotics 3

Monica S. Lam, Katherine A. Yelick, Alok N. Choudhary, Michael L. Scott, James C. Browne, Marina C. Chen, Rudolf Eigenmann,
Dennis Gannon, Charles Koelbel, Wei Li 0015, Thomas J. LeBlanc, David A. Padua, Constantine D. Polychronopoulos, Sanjay
Ranka, Ian T. Foster, Carl Kesselman, Geoffrey Fox, Tomasz Haupt, Allen D. Malony, Janice E. Cuny, Joel H. Saltz, Alan Sussman

Compiler & Software System

TABLE III. CO-AUTHOR GROUPS

Setting GD Type Density Co-author Group #Authors Positive
Clique?

Ave. Degree
Difference

Approx.
Ratio

Graph Affinity
Difference

Edge Density
Difference (WD(S)

|S|2
)

Weighted Emerging Average Degree UTA Machine
Learning 4 Yes 81.5 2 — 20.375

Weighted Emerging Graph Affinity UTA Machine
Learning 4 Yes 81.5 — 23.167 20.375

Weighted Disappearing Average Degree Japan
Robotics 1 6 Yes 143 2 — 23.833

Weighted Disappearing Graph Affinity Japan
Robotics 2 2 Yes 50 — 50 50

Discrete Emerging Average Degree CMU Privacy
& Security 7 Yes 12 2 — 1.714

Discrete Emerging Graph Affinity CMU Privacy
& Security 7 Yes 12 — 1.714 1.714

Discrete Disappearing Average Degree Compiler &
Software System 22 Yes 21.45 2 — 0.975

Discrete Disappearing Graph Affinity Japan
Robotics 3 8 Yes 14 — 1.714 1.714

TABLE IV. INFORMATION OF CO-AUTHOR GROUPS

(0.44)}. Our DCSGreedy algorithm for solving DCSAD also
found the disappearing topic {mining, association, rules}. We
skip the emerging topic w.r.t. the average degree measure,
because DCSGreedy found a large set of 38 keywords which
lacks interpretability. Since a research topic/story often only
has a few keywords, the graph affinity which prefers small and
densely connected subgraphs is a more proper density measure
in this task compared to the average degree. In [1], Angel et al.
also suggested to use small and dense subgraphs for identifying
stories in text data.

To further demonstrate the effectiveness of applying DCS
in identifying emerging/disappearing research topics, we also
display the top results returned by our SEACD+Refinement
algorithm. Remember this algorithm does initializations using
every vertex in GD and returns multiple positive cliques in
GD. We removed the duplicate cliques and the cliques that are
sub-graphs of other cliques found. We list the top-5 positive

cliques with the highest graph affinity difference found by the
SEACD+Refinement in Table V.

From the results we can find that our DCSGA algorithms
are very effective. Social networks, matrix factorization, semi-
supervised learning and unsupervised feature selection all
became hot topics only in recent years, and they were not
that popular in early years. Moreover, due to the need from
industry and the development of computation power, large
scale is turning into one of the most important concerns in data
mining research. For the disappearing topics, association rule
mining, support vector machines, inductive logic programming
and intrusion detection are all relatively mature research topics
which were majorly investigated in early years. “Knowledge
discovery” used to be a popularly adopted term when data
mining as a research area arouse.

What’s more, we also report the top-5 topics in G1 and G2

Rank Keyword Set/Topic
Emerging Disappearing

1 {social (0.5), networks (0.5)} {mining (0.12), association (0.45),
rules (0.43)}

2 {large (0.5), scale (0.5)} {knowledge (0.5), discovery (0.5) }

3 {matrix (0.5), factorization (0.5)} {support (0.39), vector (0.38),
machines (0.23) }

4 {semi (0.45), supervised (0.45),
learning (0.1)}

{logic (0.36), inductive (0.26),
programming (0.38)}

5 {unsupervised (0.34), feature (0.29),
selection (0.27)} {intrusion (0.5), detection (0.5)}

TABLE V. TOP 5 EMERGING/DISAPPEARING TOPICS W.R.T. GRAPH
AFFINITY

Rank Keyword Set/Topic
G1 (1998-2007) G2 (2008-2017)

1 {time (0.5), series (0.5)} {social (0.5), networks (0.5)}

2 {support (0.41), vector (0.41),
machines (0.18)} {time (0.5), series (0.5)}

3 {feature (0.5), selection (0.5)} {large (0.5), scale (0.5)}
4 {decision (0.5), trees (0.5)} {feature (0.5), selection (0.5)}

5 {nearest (0.5), neighbor (0.5)} semi (0.46), supervised (0.47),
learning (0.07)}

TABLE VI. TOP 5 TOPICS W.R.T. GRAPH AFFINITY

in Table VI. Since average degree density measure prefers large
subgraphs and is not very proper for identifying topics/stories,
we do not report the top topics w.r.t. average degree. The
aim of displaying such results is to show the necessity of
applying DCS to find emerging/disappearing topics. If we
mine emerging/disappearing topics only in one graph like [1]
does, the results may be not effective. For example, if we
only consider G2 to mine emerging topics, we would find
{time (0.5), series (0.5)} and {feature (0.5), selection (0.5)}.
However, {time (0.5), series (0.5)} and {feature (0.5), selection
(0.5)} were hot topics before 2008 so they were not emerging
topics during 2008-2017. The topic {time (0.5), series (0.5)}
even cooled down in the last ten years, since its graph affinity
density dropped from 1.185 (in G1) to 1.049 (in G2) according
to our calculation.

D. Efficiency Comparison

Limited by space, we focus on the running time of the
DCSGA algorithms, since all DCSAD algorithms have quasi-
linear time complexity O((m1+m2+n) logn), and are efficient
and scalable in practice.

Besides the above DCS mining tasks, to compare the
efficiency of the algorithms, we also employed several other
data sets whose statistics can be found in Table II. How these
datasets were generated and the description of experiments on
these datasets please refer to the Appendix.

Table VII reports the running time of each DCSGA al-
gorithm on each data set. Since we set different convergence
conditions for the Shrink stage of each algorithm, one may
wonder whether the convergence condition for SEA+Refine
is too strict and makes SEA+Refine not as efficient as the
other two algorithms. Thus, we also report the number of
errors made by SEA+Refine in the Expansion stages. Note
that the errors in Expansion are caused by that the Shrink
stage cannot reach a local KKT point. From Table VII we
find that the SEA+Refine algorithm often made mistakes in
the Expansion stage, which means the convergence condition
for the Shrink stage of SEA+Refine is still too loose to achieve
a local KKT point. It is worth noting that the two algorithms

Data Setting GD Type NewSEA SEACD+
Refine

SEA+
Refine

#Errors
in SEA

DBLP Weighted Emerging 0.05 3.2 14.3 1
DBLP Weighted Disappearing 0.05 3.2 13.7 1
DBLP Discrete Emerging 0.06 2.9 7.3 2
DBLP Discrete Disappearing 0.06 2.9 6.8 0
DM — Emerging 0.35 14.1 185.3 0
DM — Disappearing 0.21 6.9 36.3 0
Wiki — Consistent 56.6 452 36121 80
Wiki — Conflicting 23.8 110 7703 211

Movie — Interest−
Social 16.3 29.6 580.6 1

Movie — Social−
Interest 23.1 32.7 404.8 1

Book — Interest−
Social 2.02 14.5 53.2 0

Book — Social−
Interest 20.9 32.7 397 0

DBLP-C Weighted — 2.01 8054 23090 118
DBLP-C Discrete — 12.3 7678 22837 131

Actor Weighted — 2.3 2249 73671 321
Actor Discrete — 155 2574 124132 4419

TABLE VII. RUNNING TIME IN SECONDS.

m+/n

0 10 20 30 40

S
pe

ed
U

p
of

 S
E

A
C

D
+

R
ef

in
e

0

20

40

60

80

(a) Speed-Up
m+/n

0 10 20 30 40

E
xp

an
si

on
 E

rr
or

 R
at

e

0

0.002

0.004

0.006

0.008

0.01

0.012

(b) Errors of SEA

Fig. 2. SpeedUp of SEACD+Refine and Errors in Expansions of SEA+Refine

using our coordinate descent algorithm in the Shrink stage,
NewSEA and SEACD+Refine, never made mistakes in the
Expansion stage. We also find that our NewSEA algorithm
often is much faster than the other two algorithms. Note that
the only difference between NewSEA and SEACD+Refine is
the smart initialization heuristic. Compared to SEACD+Refine,
the smart initialization heuristic sometimes brings us a speed
up of 3 orders of magnitude. Moreover, SEACD+Refine is
always faster than SEA+Refine, sometimes 80 times faster.
It seems when the input GD+ is sparse, SEACD+Refine and
SEA+Refine are close in efficiency. When GD+ becomes
denser, the gap in efficiency gets larger. The Expansion error
rate (defined by #Errors in SEA

n) seems correlated with how dense
GD+ is. The results are shown in Fig. 2, where m+/n measures
how dense GD+ is, and m+ is the number of edges in GD+ .

E. Comparison with EgoScan [6]

Both DCSAD and DCSGA are new problems that were
not discussed in literature before, and this paper focuses on
algorithmic solutions to the two problems, so there are no very
suitable baselines for our algorithms. However, in this section,
we still compare our DCS mining algorithms with the EgoScan
algorithm in [6], which is the work closest to ours in literature.
The objective of EgoScan is to maximize WD(S) subject to
S⊆V on the difference graph GD.

We ran the EgoScan algorithm2 on the datasets used
in our experiments. Unfortunately, since EgoScan needs a
Semi-Definite Programming (SDP) solver as a frequently used
subroutine, and the SDP solver is really slow and consumes

2We thank the authors of [6] for providing us the code of EgoScan.

too much memory when ego nets of vertices are large (having
more than thousands of vertices), we only got results on the
4 DBLP co-author difference graphs that we used to draw
emerging/disappearing co-author groups. For the 4 graphs,
EgoScan always spent more than 100 seconds to finish. For
other datasets, either EgoScan could not finish running in one
day or the memory (16GB) of our machine was not enough
for the SDP solver. The high computational cost is actually
one drawback of applying EgoScan in practice.

We display the results of running EgoScan on the DBLP
co-author data. Since all co-author groups found by EgoScan
have at least 44 authors, we cannot list all the authors. We
only show statistics of these co-author groups. From Table VIII
and referring to Table IV which shows statistics of the author
groups found by our DCS algorithms, we find that our DCS
algorithms are much better than EgoScan in finding DCS w.r.t.
average degree and edge density. Moreover, subgraphs found
by EgoScan are all big, even bigger than the subgraphs found
by our DCSGreedy algorithms.

We also compare our DCS algorithms with EgoScan in
finding subgraphs w.r.t. the total edge weight difference WD(S),
which is shown in Table IX. Note that the total edge weigh
difference of a solution x returned by our NewSEA algorithm
is defined as WD(Sx). Under the evaluation metric of total
edge weight difference, EgoScan performs much better than
our DCS algorithms.

Table VIII, IX and IV show that DCS w.r.t. different
measures could be very different. We have the following rough
suggestions for deciding which measures to use in practice:
(1) if users prefer small DCS and good interpretability, we
should take graph affinity as the density measure and apply our
NewSEA algorithm, since it always returns a positive clique
where for every pair of vertices, their connection in G2 is
tighter than their connection in G1; (2) if users prefer a medium
sized subgraph, then average degree should be the measure and
we apply our DCSGreedy algorithm; (3) If users want a even
larger subgraph, total edge weight maybe the suitable measure
because it seems that such a measure encourages even bigger
subgraphs than average degree.

VII. CONCLUSION

In this paper, we studied the Density Contrast Subgraph
problem that have interesting applications in practice. Two
popularly adopted graph density measures, average degree and
graph affinity, were considered. We proved the hardness of the
DCS problem under the two measures, and devised algorithms
that work well in practice for finding DCS under both density
measures. We reported a series of experiments on both real
and synthetic datasets and demonstrated the effectiveness and
efficiency of our algorithms.

There are some interesting future directions. For example,
our methods are based on graph density, but density sometimes
cannot reflect how “dissimilar” a subgraph looks in two graphs.
Thus, how to extract subgraphs that are dissimilar in two
graphs with respect to some graph similarity measures [16]
is interesting. Also, our methods only mine one DCS with the
greatest density difference, how to mine multiple subgraphs
with big density difference is another interesting direction.

REFERENCES

[1] A. Angel et al. Dense subgraph maintenance under streaming edge
weight updates for real-time story identification. PVLDB, 5(6):574–
585, 2012.

[2] B. Bahmani et al. Densest subgraph in streaming and mapreduce.
PVLDB, 5(5):454–465, 2012.

[3] J. L. Bentley. Solutions to klee’s rectangle problems. Technical report,
Technical report, Carnegie-Mellon Univ., Pittsburgh, PA, 1977.

[4] S. Bhattacharya et al. Space-and time-efficient algorithm for maintain-
ing dense subgraphs on one-pass dynamic streams. In STOC, pages
173–182. ACM, 2015.

[5] S. Boyd et al. Convex optimization. Cambridge university press, 2004.

[6] J. Cadena et al. On dense subgraphs in signed network streams. In
ICDM, pages 51–60. IEEE, 2016.

[7] M. Charikar. Greedy approximation algorithms for finding dense
components in a graph. In APPROX, pages 84–95. Springer, 2000.

[8] L. Chu et al. Alid: scalable dominant cluster detection. PVLDB,
8(8):826–837, 2015.

[9] A. Epasto et al. Efficient densest subgraph computation in evolving
graphs. In WWW, pages 300–310. ACM, 2015.

[10] E. Fratkin et al. Motifcut: regulatory motifs finding with maximum
density subgraphs. Bioinformatics, 22(14):e150–e157, 2006.

[11] A. Gionis et al. Bump hunting in the dark: Local discrepancy
maximization on graphs. In ICDE, pages 1155–1166. IEEE, 2015.

[12] A. V. Goldberg. Finding a maximum density subgraph. University of
California Berkeley, CA, 1984.

[13] H. Hu et al. Mining coherent dense subgraphs across massive biological
networks for functional discovery. Bioinformatics, 21(suppl 1):i213–
i221, 2005.

[14] R. Kelley et al. Systematic interpretation of genetic interactions using
protein networks. Nature biotechnology, 23(5):561–566, 2005.

[15] S. Khuller et al. On finding dense subgraphs. In ICALP, pages 597–608.
Springer, 2009.

[16] D. Koutra et al. Deltacon: A principled massive-graph similarity
function. In SDM, pages 162–170. SIAM, 2013.

[17] W. Li et al. Pattern mining across many massive biological networks. In
Functional Coherence of Molecular Networks in Bioinformatics, pages
137–170. Springer, 2012.

[18] H. Liu et al. Fast detection of dense subgraphs with iterative shrinking
and expansion. IEEE TPAMI, 35(9):2131–2142, 2013.

[19] M. Mitzenmacher et al. Scalable large near-clique detection in large-
scale networks via sampling. In KDD, pages 815–824. ACM, 2015.

[20] T. S. Motzkin et al. Maxima for graphs and a new proof of a theorem
of turán. Canad. J. Math, 17(4):533–540, 1965.

[21] M. Pavan et al. Dominant sets and pairwise clustering. IEEE
transactions on pattern analysis and machine intelligence, 29(1), 2007.

[22] R. A. Rossi et al. Fast maximum clique algorithms for large graphs.
In WWW, pages 365–366. ACM, 2014.

[23] R. M. H. Ting et al. Mining minimal contrast subgraph patterns. In
SDM, pages 639–643. SIAM, 2006.

[24] C. Tsourakakis et al. Denser than the densest subgraph: extracting
optimal quasi-cliques with quality guarantees. In KDD, pages 104–
112. ACM, 2013.

[25] B. Wang et al. Spatial scan statistics for graph clustering. In SDM,
pages 727–738. SIAM, 2008.

[26] Z. Wang et al. Tradeoffs between density and size in extracting dense
subgraphs: A unified framework. In ASONAM, pages 41–48. IEEE,
2016.

[27] Y. Wu et al. Mining dual networks: Models, algorithms, and applica-
tions. ACM TKDD, 10(4):40, 2016.

[28] T. Xu et al. Towards annotating media contents through social diffusion
analysis. In ICDM, pages 1158–1163. IEEE, 2012.

[29] Y. Yang et al. Mining most frequently changing component in evolving
graphs. World Wide Web, 17(3):351–376, 2014.

Setting GD Type #Authors #Edges Positive Clique? Ave. Degree Difference Edge Density Difference (WD(S)
|S|2

)

Weighted Emerging 82 473 No 26.95 0.3287
Weighted Disappearing 59 311 No 45.39 0.7693
Discrete Emerging 44 124 No 7.46 0.1694
Discrete Disappearing 80 527 No 13.8 0.1725

TABLE VIII. STATISTICS OF CO-AUTHOR GROUPS (SUBGRAPHS) FOUND BY EGOSCAN

Setting GD Type DCSGreedy NewSEA (WD(Sx)) EgoScan
Weighted Emerging 326 326 2210
Weighted Disappearing 858 100 2678
Discrete Emerging 84 84 328
Discrete Disappearing 472 112 1104

TABLE IX. TOTAL EDGE WEIGHT DIFFERENCE (WD(S)) OF
CO-AUTHOR GROUPS FOUND BY DCS ALGORITHMS AND EGOSCAN

APPENDIX

A. The SEA Algorithm

The SEA algorithm [18] solves Eq. 6 when the symmetric
matrix D only has non-negative entries. The strategy of SEA is
to iteratively find a local KKT point (Shrink stage) and expand
it to more vertices (Expansion stage) until convergence.

Shrink Stage. To find a local KKT point on a set of vertices
S, a replicator dynamic is exploited. The replicator equation is

xi(t +1) = xi(t)
(Dx)i

x(t)>Dx(t)
, i ∈ S (12)

where xi(t) is the value of xi in the t-th iteration. To make this
replicator dynamic converge, D should be non-negative.

Expansion Stage. In the Expansion stage, SEA firstly find the
set Z as Algorithm 3 does in Line 6. According to Eq. 12, if
xi at the beginning of the replicator dynamic is 0, it will stay
0 forever. Thus, SEA needs to give a positive initial value xv
to each vertex v ∈ Z. To do that, we first define the γ vector,

γi =

{
0 i /∈ Z
∇i fD(x)− fD(x) i ∈ Z

where x is the local KKT point to be expanded by Z. Let s =
∑i∈Z γi, ζ = ∑i∈Z γ2

i and ω = ∑i, j∈Z γiγ jD(i, j). The Expansion
stage updates x along the direction b, where

bi =

{
−xis i ∈ Sx
γi i ∈ Z

Let fD(x) = λ̄ . We maximize fD(x+ τb)− fD(x) = −(λ̄ s2 +
2sζ−ω)τ2−2ζ τ over τ . The best τ can be found analytically.
Let a = λ̄ s2 +2sζ −ω , when a≤ 0 we set τ = 1

s , and we set
τ = min{ 1

s ,−
1
a} otherwise. Then x is updated to x+ τb.

B. More Experimental Results

GD Type #Users Graph Affinity
Difference

Edge Density
Difference WD(Sx)

|Sx |2

Consistent 5 6.901 6.845
Conflicting 6 6.456 6.209

TABLE XI. DCS WITH RESPECT TO GRAPH AFFINITY ON WIKI DATA

Interest GD Type #Users Graph Affinity
Difference

Edge Density
Difference WD(Sx)

|Sx |2

Movie Interest−Social 32 0.969 0.969
Movie Social−Interest 18 0.944 0.944
Book Interest−Social 14 0.929 0.929
Book Social−Interest 22 0.955 0.955

TABLE XIII. DCS WITH RESPECT TO GRAPH AFFINITY ON DOUBAN
DATA

Data Setting #Users Graph Affinity
Difference

Edge Density
Difference WD(Sx)

|Sx |2

DBLP-C Weighted 2 200 200
DBLP-C Discrete 26 1.919 1.917

Actor Weighted 3 108.25 98.44
Actor Discrete 21 6.46 6.21

TABLE XIV. DCS WITH RESPECT TO GRAPH AFFINITY ON DBLP-C
AND ACTOR DATA

1) Extracting Consistent and Conflicting Editor Groups:
We also tested our DCS mining algorithm on a Wikipedia
network with editor (user) interaction data (http://konect.
uni-koblenz.de/networks/wikiconflict). This wiki dataset has
two weighted networks, a positive interaction network G1 and
a negative interaction network G2, where vertices are editors
of Wikipedia pages. An example of a negative interaction is
when one user revert the edit of another user.

Similar to the emerging/disappearing co-author group min-
ing task, we also mined two kinds of editor groups. The first
kind is the editor group whose consistency in editing is much
more than their conflict and the second kind is the opposite. We
call the first kind of editor group the Consistent group and the
second kind the Conflicting group. For mining the Consistency
group and the Conflicting group, we ran the algorithms on the
Consistent GD, which is set to G1−G2, and the Conflicting
GD, which equals G2−G1, respectively.

Tables X and XI show the results. The 3 DCSGA algo-
rithms again produced the same result. Unlike in the DBLP
dataset, where DCSAD algorithms all find positive cliques as
DCS, this time none of the subgraphs produced by them is
a positive clique. Moreover, all DCS with respect to average
degree are significantly larger in size than the DCS with respect
to graph affinity. This is similar to the fact that for mining
dense subgraphs in a single graph, average degree density
encourages large subgraphs while graph affinity density prefers
subgraphs with small size [19], [26].

2) Mining DCS in Douban Network: We also applied our
DCS mining algorithms on a Douban dataset [28], where
Douban is a famous content-sharing online social network in
China. The Douban dataset contains a user social network,
and movie ratings and book ratings of every user. We extract
users who have rated at least 50 movies and 20 books, and
the induced subgraph of these users in the social network is
recorded as G1. To build the interest similarity graph G2, we

GD Type DCSGreedy GD Only GD+ Only

#Users Ave. Degree
Difference

Approx.
Ratio

Positive
Clique? #Users Average

Degree
Positive
Clique? #Users Average

Degree
Positive
Clique?

Consistent 937 398.71 2.13 No 1013 345.25 No 937 398.71 No
Conflicting 222 335.03 2.06 No 222 335.03 No 230 332.24 No

TABLE X. EFFECTIVENESS COMPARISON OF MINED DCSS WITH RESPECT TO AVERAGE DEGREE ON WIKI DATA

Interest GD Type DCSGreedy GD Only GD+ Only

#Users Ave. Degree
Difference

Approx.
Ratio

Positive
Clique? #Users Average

Degree
Positive
Clique? #Users Average

Degree
Positive
Clique?

Movie Interest−Social 968 176.002 2.05 No 968 176.002 No 1003 175.958 No
Movie Social−Interest 4047 68.288 2.11 No 4047 68.288 No 4473 62.351 No
Book Interest−Social 610 43.190 2.12 No 610 43.190 No 719 42.754 No
Book Social−Interest 4175 71.280 2.03 No 4175 71.280 No 4403 70.825 No
TABLE XII. EFFECTIVENESS COMPARISON OF MINED DCSS WITH RESPECT TO AVERAGE DEGREE ON DOUBAN DATA

utilize user ratings data. Specifically, we computed the Jaccard
similarity of movies/books rated by two users u and v if u and
v are within 2 hops in G1. For the movie similarity graph, we
built an edge (u,v) if the Jaccard similarity between the movie
lists rated by them is greater than 0.2. For the book similarity
graph, this threshold value is set to 0.1, because Book ratings
are sparser than Movie ratings. Both G1 and G2 are uniformly
weighted graph, that is, edge weights are all 1.

Still, we built two types of GD, Interest−Social (G2−G1)
and Social−Interest (G1−G2). The Interest−Social GD is for
mining DCS whose density in the interest graph minus its den-
sity in the social graph is maximized, while the Social−Interest
GD is for mining the opposite kind of DCS. Before we show
the results of mining DCS, let us first look at the statistics
of the difference graphs of the Douban data in Table II.
Even we set a lower threshold on the Jaccard similarity for
building the Book interest similarity graph, the Interest−Social
difference graph of Book still has substantially less positive
weighted edges than the Interest−Social difference graph of
Movie. Moreover, no matter the interest is Movie or Book, the
Interest−Social difference graph has much less positive edges
than the Social−Interest difference graph. Our experimental
results will show more interesting findings that are not reflected
just by the statistics of difference graphs.

Table XII and Table XIII show the results. Similar to the
wiki dataset, the DCSAD algorithms all find big subgraphs.
All DCSGA algorithms again extract the same embedding
(subgraph) in every type of the difference graph.

One interesting finding from Table XII and Table XIII
is that no matter what graph density is used, for the Movie
interest, the DCS from the Interest−Social GD is denser
(has a greater density difference) than the DCS from the
Social−Interest GD, which has more positive edges than the
Interest−Social GD. However, for the Book interest, we get
the opposite result.

Remember that the SEACD+Refinement algorithm do ini-
tializations using every vertex in GD, and it actually finds mul-
tiple positive cliques in GD. Thus, we also report the statistics
of cliques found by the SEACD+Refinement algorithm. We
removed the duplicate cliques and the cliques that are sub-
graphs of other cliques found. Fig 3 shows the results, where
for the Movie interest, we report the counts of k-cliques found
where k ≥ 10 and for the Book interest we report the counts
of k-cliques found where k ≥ 8. Although the Social−Interest
GD has much more positive edges than the Interest−Social GD

for the Movie interest, the Social−Interest GD has more and
larger positive cliques than the Interest−Social GD. Again, for
the Book data, the situation is the opposite.

Clique Size
10 15 20 25 30 35

#C
liq

ue
s

0

100

200

300

400

500
Interest-Social
Social-Interest

(a) Movie

Clique Size
8 10 12 14 16 18 20 22

#C
liq

ue
s

0

200

400

600

800

1000

1200
Interest-Social
Social-Interest

(b) Book

Fig. 3. Clique Counts of Douban Data

The results of mining DCS from the Douban data suggest
that the formation of the Douban social network may depend
more on users’ interest similarity on Movie than on Book.

3) DBLP-C and Actor Datasets: To compare the effi-
ciency of the algorithms, we also employed two large data
sets, DBLP-C and Actor. The DBLP-C data set contains
timestamped co-authorship records. We split all co-authorship
records into two almost even parts by setting a specific
timestamp as the separation timestamp. Then the two parts
were used to build two co-author graphs G1 and G2, where the
weight of an edge between two vertices (authors) is the number
of collaborations. Similar to the Emerging/Disappearing co-
author group mining task, we adopted the Weighted and
Discrete settings to build the difference graph GD. The actor
data set is a collaboration network of actors, where the weight
of an edge between two vertices (actors) is the number of col-
laborations. We directly used this actor collaboration network
as a difference graph, since as pointed out in Section V-C,
our DCSGA algorithms are also competitive solutions to
traditional graph affinity maximization on weighted graphs.
For the Actor difference graph, we also tried the Weighted
setting and the Discrete setting, where in the Discrete setting
we set edge weights D(u,v) = 10 if D(u,v) originally was
greater than 10. The statistics of DBLP-C and Actor difference
graphs can be found in Table II. Table XIV reports the DCS
found, where all DCSGA algorithms again found the same
DCS every time.

