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Abstract. Deep neural networks (DNNs) for image classification are
known to be susceptible to many diversified universal adversarial per-
turbations (UAPs), where each UAP successfully attacks a large but
substantially different set of images. Properly combining the diversified
UAPs can significantly improve the attack effectiveness, as the sets of
images successfully attacked by different UAPs are complementary to
each other. In this paper, we study this novel type of attack by develop-
ing a cocktail universal adversarial attack framework. The key idea is to
train a set of diversified UAPs and a selection neural network at the same
time, such that the selection neural network can choose the most effec-
tive UAP when attacking a new target image. Due to the simplicity and
effectiveness of the cocktail attack framework, it can be generally used
to significantly boost the attack effectiveness of many classic single-UAP
methods that use a single UAP to attack all target images. The proposed
cocktail attack framework is also able to perform real-time attacks as it
does not require additional training or fine-tuning when attacking new
target images. Extensive experiments demonstrate the outstanding per-
formance of cocktail attacks.
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1 Introduction

Deep neural networks (DNNs) for image classification are well known to be
susceptible to universal adversarial perturbations (UAPs) [23]. A UAP is an
adversarial perturbation that can be directly added to many target images to
change a victim DNN’s predictions on them [39]; and it often generalizes well in
attacking different target images and transfers well in attacking different victim
DNNs [74[191[231/34,/39]. Many classic single-UAP methods [7,/19}23}27.[33L[34139]
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train a single UAP to perform adversarial attacks in real time, which requires no
further training or fine-tuning on the UAP when attacking new target images.
As a result, a well-trained UAP posts a great potential threat to the security of
DNNs.

To make it worse, a DNN image classifier is susceptible to a large number
of UAPs [2333,/38,/40,|41]. This implies the existence of many diversified UAPs,
each of which can successfully attack a large but substantially different set of
images. Since the sets of images successfully attacked by the diversified UAPs
are complementary to each other, properly combining multiple diversified UAPs
should significantly boost the attack effectiveness. This may potentially pose an
even bigger threat to the security of DNN-based image classifiers.

In order to verify and study the above security threat, we propose a novel
framework named cocktail universal adversarial attack, or cocktail attack
for short. The key idea is to find a set of K diversified UAPs and attack each
new target image by the most effective UAP in the set. Here, the term “diver-
sified” means that the K UAPs focus on attacking different sets of images with
large discrepancies. We name the proposed attack by “cocktail” because it uses
K diversified UAPs to perform strong attacks. When attacking a new target
image, the most effective UAP is selected by a selection neural network that is
trained simultaneously with the UAPs. The cocktail attack framework signifi-
cantly improves the attack effectiveness because, if each UAP selected by the
selection neural network can successfully attack the corresponding target image,
then the cocktail attack will successfully attack the union of the images that are
successfully attacked by each of the K diversified UAPs. Meanwhile, a cocktail
attack can also be conducted in real time, because no additional training or
fine-tuning is required when attacking a new target image. Comparing to classic
single-UAP methods [7,/19}23}[27}133,[34,/39] that train a single UAP to attack
all target images, the only extra overhead of conducting a cocktail attack is a
forward pass of the target image through the selection neural network, which
takes about 2.4 milliseconds on an NVIDIA RTX 3060 GPU.

As far as we know, the cocktail attack is a novel framework of universal
adversarial attack that has not been systematically studied in the literature. As
discussed later in Sec.[2] most existing single-UAP methods |7,,1923])27133//34,39|
focus on finding a single UAP that successfully attacks the largest group of
images. These methods pay less attention on finding and combining diversified
UAPs, thus missing the opportunity to harness the power of cocktail universal
adversarial attacks.

In this paper, we propose a novel cocktail attack framework against DNN-
based image classification models. The proposed attack framework can be gen-
erally applied on single-UAP methods to significantly boost the attack effective-
ness while achieving a fast attack speed in real time. We make the following
contributions. First, in order to obtain the set of K diversified UAPs used to
conduct cocktail universal adversarial attacks, we formulate the task of finding
diversified universal adversarial perturbations (FDUAP) as a clustering prob-
lem that is shown to be NP-hard. The goal of FDUAP is to find K clusters of
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images while generating the corresponding UAP for each of the clusters, such
that the number of successfully attacked images is maximized. Second, we use
a selection neural network to relax the clustering problem from a discrete op-
timization problem to a continuous optimization problem. The key idea is to
substitute the discrete variable indicating the membership of each target image
to a cluster of images by the probability of cluster membership predicted by the
selection neural network. Third, we solve the continuous optimization problem
by a gradient-based method, which simultaneously trains the set of K diversified
UAPs and the selection neural network in an end-to-end manner. After training,
the selection neural network can efficiently select one of the K diversified UAPs
to attack a new target image, which makes it possible to perform fast cocktail
attacks in real time. Last, we conduct extensive experiments to demonstrate
the outstanding performance of the proposed cocktail attack framework, which
significantly boosts the attack effectiveness of four representative single-UAP
methods [271/34,/39,40] while keeping the attacks efficient in real time.

2 Related Works

How to conduct cocktail universal adversarial attacks on DNNs is a novel prob-
lem that has not been systematically studied in the literature. It is broadly
related to the following two categories of existing adversarial attacks on DNNs.

The image-dependent adversarial attacks [2}/4,|822}24,|29-31,|33] aim
to attack a target image by adding a specifically customized perturbation to
the image, such that the victim DNN makes a false prediction on the perturbed
image.

One subcategory of image-dependent adversarial attacks is the optimization-
based methods [2,/4}8,[22[24]/31]. These methods train each perturbation from
scratch for every single target image by solving an optimization problem, which
is computationally expensive to produce one perturbation per target image.
Therefore, these methods cannot achieve real-time attacks on new target im-
ages [38}40].

Another subcategory of image-dependent adversarial attacks is the generator-
based methods [29,30//33]. These methods generate a perturbation much faster
than the optimization-based methods. The key idea is to train a generator net-
work that maps each new target image into a unique perturbation to attack the
target image. Generating a perturbation for a new target image is done by a
single forward pass of the target image through the generator network. There-
fore, the generator-based methods can achieve real-time attacks on new target
images.

The single-UAP methods [3}/5,23},26,38,40] are well known for their abil-
ity to conduct real-time attacks. This is achieved by training a single UAP to
successfully attack as many target images as possible, such that the trained UAP
can be directly used to attack new target images without any additional training
or fine-tuning.
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The existence of UAP was first discovered by [23]|. Afterwards, many single-
UAP methods were developed for different application contexts. The data-efficient
method [17] generated a UAP with a small amount of training data. The data-
free methods [20,21} 25} 26} |28|[39,|40] went further to generate a UAP with-
out accessing the training dataset of victim DNNs. The gradient-based meth-
ods [7,134;[39,/40] achieved superior attack effectiveness by directly optimizing
the UAP by stochastic gradients. The class-discriminative methods |1413}/38] at-
tempted to craft a UAP specific to images of a chosen group of classes, while
having limited influence on the other classes. The double-targeted method [3] ex-
tended the class-discriminative methods by shifting images of certain classes to a
different class of choice. The GAN-based methods [14}27,[33] implicitly modelled
the distribution of UAPs for a victim DNN by training a generative adversarial
network (GAN) [11]. The above methods focus on performing real-time attacks
by using a single trained UAP. However, the number of images that can be suc-
cessfully attacked by a single UAP is often limited, which reduces the attack
effectiveness of these methods [40].

In our work, we discovered that a DNN is usually susceptible to many diver-
sified UAPs, each of which can successfully attack a substantially different set
of images. The sets of images successfully attacked by the diversified UAPs are
often complementary to each other. Based on these insights, we develop a novel
cocktail attack framework for universal adversarial attacks, which finds a set of
K diversified UAPs and attacks a new target image by the most effective UAP
chosen by a well-trained selection neural network.

As demonstrated by the extensive experiments in Sec. [d] the cocktail attack
framework significantly improves the attack effectiveness of the classic single-
UAP methods [27,|34}[38,[40], and the resulting cocktail attacks even achieve
superior attack effectiveness than the image-dependent generator-based attack
methods [29,[33]. Meanwhile, the cocktail attacks can also be conducted in real
time since no additional training or fine-tuning is required when attacking new
target images.

3 Cocktail Universal Adversarial Attack

In this section, we introduce how to find a set of diversified UAPs and then
use them to launch fast cocktail universal adversarial attacks. Following the
prior works [19,[231|27}/32}38}/39], we focus on attacking DNN models for image
classification task.

3.1 The Task of Finding Diversified UAPs

In this subsection, we define the task of finding diversified UAPs, as finding a
set of diversified UAPs is the first step to launch successful cocktail universal
adversarial attacks.

Denote by X C RP a distribution of images, and by X = {z;}}¥, C X a set
of N training images with a set of class labels, denoted by C = {1,2,...,C}.
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The victim model to attack is a DNN, denoted by f, which is trained on X to
perform a classification task. For a target image z; € X, denote by l¢(z;) € C the
class label of x; predicted by f. The goal of the attacker is to add an adversarial
perturbation § € RP to the target image x;, such that i;(x;) # l;(z; + §). The
process of adding ¢ to x; is referred to as an attack [3}27,[34,138]. If I;(z;) #
ly(z;+9), then we say z; is successfully attacked by ¢. We refer to a UAP as
a perturbation when the context is clear.
Now, we define the task of finding diversified UAPs (FDUAP) as follows.

Definition 1. Given a victim DNN f to be attacked, the training dataset X =
{x;}| used to train f, and a real-valued perturbation magnitude & > 0. The task
of finding diversified universal adversarial perturbations (FDUAP) is
to find a set of K perturbations, denoted by P = {01,...,0k}, and a set of K
non-overlapping clusters of images in X, denoted by S = {S1,...,Sk}, such
that

1. S1U...USk =X and S;NS; =0 when i # j;

2. in each cluster S; € S, the number of images successfully attacked by 6; € P
18 maximized; and

3. for each §; € P, ||6; o, <&

The key idea of FDUAP is to learn a set of K non-overlapping clusters of X,
denoted by § = {51, ..., Sk}, and use each cluster S; € S to train a perturbation
d; € P. Meanwhile, we also limit the infinity norm of § by a small perturbation
magnitude £ such that ¢ is visually imperceptible to humans [27}/32.[37,|38]

Since each perturbation is trained on a different cluster of images, the sets of
images successfully attacked by different perturbations are likely to be different.
Therefore, we regard these perturbations as diversified. We also simultaneously
optimize the perturbations in P and the clusters of images in S, such that, in
each cluster S;, the number of images successfully attacked by J; is maximized.
According to the previous works [3}[23}|34}(38,|40], maximizing the number of
training images successfully attacked by d¢; will improve the generalizability of d;
in successfully attacking many other images. Therefore, these perturbations in
P are universally applicable when attacking the images in their corresponding
clusters.

3.2 Formulate the FDUAP Task

To formulate the FDUAP task into an optimization problem, we first model the
set of clusters S by a binary matrix A € {0, 1}V *¥ with N rows and K columns.
The entry A; ; € {0, 1} at the i-th row and the j-th column of A defines whether
the i-th image ; € X belongs to the j-th cluster S; € S. That is, 4; ; = 1 when
z; € S, and A; j = 0 when z; ¢ S;. Since S1U...USkg =X and S;NS; =0
when ¢ # j, the matrix A should satisfy Zfil A;j=1vie{l,...,N}

To train the perturbations in P, a loss function Ly(x;,d;) is required to
measure the similarity between the predictions of an image x; in the victim
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DNN f before and after the perturbation d; is added to z; [19,|32]. A smaller
value of Ly(z;,0;) indicates f is more likely to change its prediction on z;, thus
the attack launched by adding §; to ; is more likely to be successful [19,/32}/38|.

Many effective loss functions have been proposed by different single-UAP
methods in the literature [42]. It is beyond the scope of this work to develop a
new loss function. Instead, we focus on developing the cocktail attack framework,
which can be generally applied on different single-UAP methods to significantly
boost their attack effectiveness.

We formulate the FDUAP task as the following mixed integer program-
ming (MIP) problem.

N K
glvill;l ZZAi,ij(x%éj)a

i=1 j=1
st. Ae{0,1}V*E,

K
S A =1Vie{l,...,N},
Jj=1
16,1l <&Vje{l,..., K},

where A; ; ensures each perturbation J; € P is trained on the corresponding
cluster S; € S. Minimizing the objective function in Eq. will maximize the
number of successfully attacked images in each cluster, which produces a solution
to the FDUAP task. We prove the MIP problem is NP-hard in the appendix.

Directly solving the MIP problem in Eq. faces two issues that prevent
the development of a successful cocktail attack. First, we cannot solve the MIP
problem by standard gradient-based methods in an end-to-end manner, since it
requires to optimize the discrete binary matrix A. This causes an issue because
the perturbations in P are often optimized by a gradient-based optimization
method to achieve good attack effectiveness [7,[34,/39,/40]. Second, the binary
matrix A cannot assign a new target image X, that is not contained in X
to any cluster in &, which means we cannot use A to select the most effective
perturbation from P to attack T,eq-

Next, we introduce our solution to tackle these issues by introducing a neural
network to relax the MIP problem to a continuous optimization problem.

3.3 Our Solution

Our solution to relax the MIP problem is to parametrize each entry A; ; in the
matrix A by a neural network gy named selection neural network. Specifically,
g maps a target image z; to a K-dimensional vector Py (z;), where the j-th entry,
denoted by Py(x;);, is the predicted value of A; ;. In plain words, g¢ predicts the
probability Pg(x;); for a target image z; to be a member of a cluster S; in S.
By substituting each entry A; ; with Py(z;),, we convert the MIP problem into
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the following continuous optimization (CO) problem.

N K

min Z ZPQ(I’i)ij(l'ia 85),

or = j=1 (2)

st |16l <&Viedl,... K},

The CO problem successfully tackles the first issue of the MIP problem since
it allows us to train the perturbations in P by gradient-based methods in an
end-to-end manner. In this work, we propose a training algorithm to alternately
optimize the selection neural network gy and the set of perturbations in P until
the objective function in Eq. becomes stable. Specifically, we update gg by
the ADAM optimizer [18] since it is a classic method to train neural networks.
We update the perturbations in P by the projected gradient descend (PGD) to
handle the convex constraints ||§;[| < £ in Eq. , which ensures the feasibility
of each perturbation §; € P.

Algorithm [I]summarizes the details of our proposed training algorithm, which
trains the selection neural network gy and the set of perturbations in P by
stochastic gradient descent.

The CO problem also tackles the second issue of the MIP problem. Because,
for a new target image X, the K entries in Py(zpew) give the probabilities
for z,e to belong to each of the K clusters in S. Therefore, we can first assign
Tnew t0 the cluster with the largest probability to contain x,.,,, and then select
the corresponding perturbation in P to attack @peq,. Algorithm [2] summarizes
the details of conducting a cocktail attack on a new target image ,,¢,, using the
K trained perturbations in P and the trained selection neural network gg.

The incorporation of gy also allows us to conduct cocktail attacks in real
time, because selecting the perturbation to attack a new target image x;,¢,, only
requires feeding ..., into gy for a single forward pass, which only takes around
2.4 milliseconds on an NVIDIA RTX 3060 GPU.

4 Experiments

In this section, we investigate the performance of the cocktail attack framework
in boosting the attack effectiveness of single-UAP methods. Due to the limit
of space, we discuss the following in the appendix: 1) the dominated classes of
diversified UAPs; 2) the attack robustness against typical defense methods; 3)
the training efficiency of our method; and 4) the hyperparameter analysis on K.

4.1 Experimental Settings

Datasets. Following the routine of the prior works 23|27, we use a subset of
ImageNet 6] to conduct our experiments. Both the training and testing datasets
contain 1,000 categories of images. The training dataset is sampled from the
original training dataset of ImageNet. It contains 10,000 images, that is, 10
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Algorithm 1: Solving the CO problem

Inputs : The victim DNN f, the training dataset X, the number of
perturbations K, and the perturbation magnitude &.

Output: The trained perturbations in P and the selection neural network gg.

Initialize each perturbation in P by zeros.

Initialize the parameters 6 of gg.

do

Xp <+ Sample a batch of images from X.
Compute the average loss on Xg by Eq. .
Compute the gradients with respect to P.
Update P by the projected gradient descent |10].
Compute the average loss on Xg by Eq. .
Compute the gradients with respect to 6.
Update 6 by the ADAM optimizer [18|.

while not converge;

return P and gp.

© 0N O A W N

R e
N = O

Algorithm 2: Conducting a cocktail attack

Inputs : The K trained perturbations in P, the trained selection neural
network go and a new image Tynew-

Output: The perturbed image /..,

Compute: Pg(Znew) = go(Tnew)-

Select: 7% « argmax; Po(Tnew);-

Perturb: x},0 ¢ Tnew + 5.

Clip the pixel values of z/,.,, to the range of [0, 255].

return Perturbed image /...

[S VU

images per category. The testing dataset is exactly the validation dataset of
ImageNet, which contains 50,000 images. The training dataset is used for the
training of attack methods and the testing dataset is used to evaluate the attack
performance of different attack methods.

Victim models and selection neural network. We evaluate the attack
performance of different attack methods against six victim DNNs, including
ResNet-50 [15], VGG-16 [35], Inception-V3 [36], SqueezeNet [16], ViT [9] and
LeViT [12]. All the victim models are pre-trained on ImageNet, and they are not
modified during the training of attack methods. We adopt SqueezeNet |16] as the
architecture of the selection neural network due to its lightweight structure [16].

Baselines. We adopt four representative single-UAP methods, including
UAT |[34], DF-UAP |[39] written in short as DF, Cosine-UAP [40] written in
short as COS, and NAG |27, to verify the performance of the proposed cocktail
attack framework in boosting the attack effectiveness. We also compare with
two image-dependent generator-based attack methods, including GAP [33] and
TDA |[29].
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We apply the proposed cocktail attack framework to each of the above single-
UAP methods in the following two different ways. Cocktail attack type 1
(CK1). We first run each single-UAP method to generate a set of K UAPs.
For UAT, DF and COS, we independently run each method for K times on
the training dataset to obtain the set of K UAPs. Since NAG trains a UAP
generator to produce UAPs, we generate K UAPs by independently sampling a
UAP using the generator for K times. After obtaining the K UAPs, we regard
them as a constant set of perturbations, denoted by P, and solve the CO problem
in Eq. to train the selection neural network gg. We do not execute the step
7 to update P when calling Algorithm [I| Therefore, CK1 can be viewed as an
ablated version of the proposed cocktail attack framework since it does not train
P and gy together. Cocktail attack type 2 (CK2). This is the complete
version of the proposed cocktail attack framework as described in Algorithm [I]
which solves the CO problem in Eq. to train P and gy together.

When applying the cocktail attack types CK1 and CK2 to a single-UAP
method, we adopt the same loss function L¢(x;,0;) as the single-UAP method
when solving the CO problem in Eq. . Comparatively, the single-UAP method
only finds a single UAP and uses it to attack all target images, but CK1 and CK2
find K diversified UAPs to conduct cocktail attacks. We denote by UAT-CK1,
DF-CK1, COS-CK1, and NAG-CKI1 the cocktail attack methods when applying
CK1 to each of the single-UAP methods; and by UAT-CK2, DF-CK2, COS-
CK2, and NAG-CK2 the cocktail attack methods when applying CK2. When
the context is clear, we omit the names of the single-UAP methods and directly
use CK1 and CK2 to refer to the corresponding cocktail attack methods of a
single-UAP method.

Implementation details. For the baseline methods, we adopt the default
hyperparameters used in their implementations. For the proposed cocktail attack
framework, we use K = 5 if not otherwise specified. For both CK1 and CK2,
we use a batch size of [$2]. For both the ADAM optimizer and the PGD, we
use a learning rate of 102, The number of training epochs is set to 100. The
architecture of the selection neural network gy is SqueezeNet |16], which has 18
layers and we use K output neurons in the last layer. The implementations are
realized using Pytorch version 1.11.0 with CUDA version 11.3. All experiments
are conducted on a server with a NVIDIA 3060 GPU, 32GB main memory, and
an Intel(R) Core(TM) i9-10900F CPU @ 2.80GHz.

Evaluation metrics. Following the prior works [23}27,/34], we adopt the
fooling ratio (FR) on the testing dataset to evaluate the attack effectiveness.
It is computed as the ratio between the successfully attacked images and the
total number of attacked images. A larger FR value indicates a better attack
effectiveness. We also evaluate the average attack time (AAT) of each attack
method by measuring the average time cost of generating the perturbed image
of a target image. It is defined as AAT = |71| > e, er t(xi), where T'is the set of
testing images, |T| is the number of testing images in T, and #(x;) is the time
cost to generate a perturbed image for x;. A smaller value of AAT implies a
faster attack speed. We report AAT in milliseconds by default.
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Table 1: The FR of all the attack methods when K =5 and £ € {2,6,10}. Bold and
underlined numbers show the best and runner up performance.

K =5 | &|GAP TDA (UAT, CK1, CK2) (DF, CK1, CK2) (COS, CK1, CK2) (NAG, CK1, CK2)
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4.2 Attack Effectiveness

In this subsection, we analyze the attack effectiveness of each attack method
when the training and the testing are conducted to attack the same victim
model.

Table [1] reports the FR of all the attack methods. We can see that the FR
of CK2 consistently outperforms CK1. This is because the set of UAPs used by
CK1 are separately trained from the selection neural network gg, where each
UAP is trained by an independent run of a single-UAP method. The UAPs
generated in this way usually do not have good diversity, which reduces the FR
of CK1. For CK2, the set of UAPs are trained together with gg. These UAPs
tend to have high diversity, as each of the UAPs is trained to attack the images
in a separate cluster S; in S, which results in a much better FR of CK2 over
CK1. We will analyze the diversity of the UAPs trained by the proposed cocktail
attack framework in Sec.

We can also see that the FR of the single-UAP methods, such as UAT, DF,
COS and NAG, are inferior to the image-dependent generator-based methods
such as GAP and TDA. This phenomenon has also been observed by the existing
works [30,/33]. The reason for the inferior FR of the single-UAP methods is
that they use a single UAP to attack all the target images, while GAP and
TDA produce image-dependent attacks that customize a unique perturbation to
attack each target image.

However, when the proposed cocktail attack framework is applied, the attack
effectiveness of the single-UAP methods is significantly improved. We can see
that DF-CK2 achieves an outstanding FR that is almost always higher than
GAP and TDA. Moreover, as shown by the numbers marked in bold in each
row of Tab. [} the highest FR is always achieved by a CK2 attack method.
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This demonstrates the outstanding performance of the proposed cocktail attack
framework in improving the attack effectiveness of the single-UAP methods.
How could CK2 achieve a better FR than GAP and TDA by using only a
small set of K =5 perturbations? We believe it is due to the following reasons.
First, each of the perturbations used by CK2 is a strong UAP that is well
trained on the training dataset to successfully attack a large and diversified set
of images. Therefore, the selection neural network gg is only required to perform
a simple 5-class classification task to select the most promising UAP from the 5
UAPs. This lowers the difficulty of designing and training an effective selection
neural network to conduct high performance cocktail attacks. Therefore, CK2
can achieve an outstanding FR by simply implementing g as a lightweight
SqueezeNet [16]. Second, for each of GAP and TDA, an adversarial perturbation
is generated by a generator network, which is required to predict every pixel value
of a unique perturbation for each target image. Comparing to developing the
selection neural network gg for a simple 5-class classification task, designing and
training a generator network to generate a large number of unique perturbations
is more difficult. This could be a reason for the inferior FR of GAP and TDA.

4.3 Attack Efficiency

In this subsection, we analyze the attack efficiency of different methods when
conducting the previous experiments in Sec. .2}

Table [2| reports the AAT of all the attack methods when K = 5 and & =
6. The ATT results of £ = 2 and £ = 10 are similar to those when £ = 6.
Therefore, we do not report these AAT results to save the redundancy. As shown
in Tab. 2] the AAT of all the compared methods are less than 10.3 milliseconds.
This demonstrates the superior efficiency of universal adversarial attacks and
generator-based attack methods in launching real-time attacks.

The AAT of each single-UAP method is less than 0.1 milliseconds since it
produces a perturbed image by directly adding the UAP to the target image.
However, the fast attack speed of the single-UAP methods is gained at the
cost of only using a single UAP to attack all target images, which has been
demonstrated to be the major bottleneck of their attack effectiveness by the
previous experiments in Tab.

The AAT of CK1 and CK2 are about 2.4 milliseconds. Comparing to the
single-UAP methods, the major overhead of CK1 and CK2 is caused by calling
the selection neural network gy to make a selection in the small set of K = 5
diversified UAPs. Since gy is a lightweight SqueezeNet [16] and making the se-
lection only requires a forward pass through gy, the additional time cost induced
by calling gy is only about 2.4 milliseconds. Considering the significant improve-
ment of attack effectiveness achieved by the cocktail attack framework in Tab.
an additional time cost of 2.4 milliseconds is almost ignorable when conducting
real-time adversarial attacks.

The AAT of GAP and TDA are around 10.1 milliseconds, which is slightly
slower than CK1 and CK2. The major overhead of GAP and TDA is caused by
the complicated generator network that maps a target image into a perturbation.
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Table 2: The AAT in milliseconds of all the attack methods when K =5 and £ = 6.

K =5, ¢ = 6|GAP TDA (UAT, CK1, CK2) (DF, CK1, CK2) (COS, CK1, CK2) (NAG, CK1, CK2)

ResNet-50 |10.1 10.1 (<0.1, 2.3, 2.3)  (<0.1, 2.4, 2.3)  (<0.1, 2.3, 2.3) (<0.1, 2.3, 2.3)
VGG-16 10.2 10.1 (<0.1, 2.4, 2.3) (<0.1, 2.4, 2.3)  (<0.1, 2.4, 2.4) (<0.1, 2.4, 2.4)
Inception-V3|10.2 10.1 (<0.1, 2.3, 2.4) (<0.1, 2.5, 2.3)  (<0.1, 2.4, 2.4) (<0.1, 2.3, 2.4)
SqueezeNet | 10.1 10.1 (<0.1, 2.3, 2.3)  (<0.1, 2.3, 2.3)  (<0.1, 2.4, 2.3) (<0.1, 2.4, 2.4)
ViT 10.3 10.2 (<0.1, 2.2, 2.3) (<0.1, 2.3, 2.3)  (<0.1, 2.3, 2.3) (<0.1, 2.3, 2.2)
LeViT 10.1 10.2 (<0.1, 2.3, 2.4) (<0.1, 2.4, 2.4)  (<0.1, 2.4, 2.5) (<0.1, 2.4, 2.4)

Table 3: The Transy, of all the attack methods when K =5 and £ € {2,6,10}. Bold
and underlined numbers show the best and runner up performance.

K =5]| fi |GAP TDA (UAT, CK1, CK2) (DF, CK1, CK2) (COS, CK1, CK2) (NAG, CK1, CK2)
ResNet-50 | 13.0 14.5 (9.6, 11.3, 14.5) (9.7, 11.9, 15.0) (9.9, 12.3, 15.2) (8.8, 12.0, 13.9)
VGG-16 | 16.4 19.7 (15.6, 17.9, 21.5) (14.7, 16.2, 20.1) (14.4, 16.9, 20.2) (13.8, 17.3, 20.3)
¢ = o |Inception-V3|19.3 208 (15.6, 17.0, 21.8) (16.6, 18.3, 21.7) (15.9, 18.0, 20.6) (15.6, 19.2, 21.1)
= SqueezeNet | 16.8 20.1 (14.0, 16.7, 19.7) (14.5, 16.6, 20.5) (15.1, 17.4, 21.5) (13.9, 18.3, 20.2)
ViT 8.8 9.7 (7.4,8.1, 11.6) (8.0, 9.3, 11.9) (7.5, 8.3, 11.7) (7.1, 7.8, 11.0)
LeViT 9.5 10.2 (8.0, 9.6, 12.0) (8.4, 10.3, 12.4) (7.8, 9.6, 11.9) (7.6, 8.6, 11.5)
ResNet-50 | 52.8 59.3 (46.8, 51.1, 60.8) (48.4, 52.7, 61.1) (45.1, 49.5, 58.4) (46.2, 52.8, 57.0)
VGG-16 | 39.1 44.0 (37.1, 40.3, 45.2) (35.5, 38.5, 42.2) (34.6, 37.3, 42.3) (33.9, 39.6, 43.9)
¢ — ¢ |Imeeption-V3| 55.7 60.0 (51.9, 55.0, 61.0) (49.6, 52.6, 59.6) (49.4, 52.5, 58.5) (50.0, 54.3, 59.4)
= SqueezeNet | 48.0 53.4 (44.1, 51.2, 55.8) (40.8, 42.6, 50.9) (42.4, 46.0, 52.3) (42.3, 45.7, 51.4)
ViT 31.6 32.8 (27.4, 31.5, 35.2) (27.7, 32.2, 35.8) (26.9, 28.4, 31.7) (27.0, 30.8, 34.8)
LeViT 33.9 36.0 (30.2, 34.0, 38.8) (30.8, 35.2, 89.6) (29.4, 32.5, 36.5) (29.6, 33.2, 37.5)
ResNet-50 | 66.9 71.6 (66.4, 67.2, 72.5) (65.6, 68.3, 72.9) (62.0, 64.1, 70.6) (66.4, 70.0, 71.7)
VGG-16 | 50.2 54.6 (46.2, 49.0, 56.3) (47.9, 50.2, 56.1) (47.3, 49.1, 55.4) (46.8, 50.5, 54.6)
¢ = 10|Inception-V3| 71.4 75.3 (68.9, 72.5, 77.7) (67.4,70.3, 75.1) (66.5, 69.4, 76.0) (66.3, T1.1, 76.4)
SqueezeNet | 59.0 65.0 (54.1, 57.1, 64.0) (55.3, 58.1, 65.2) (52.3, 55.3, 63.8) (56.0, 61.2, 65.0)
ViT 39.3 43.4 (37.3, 41.6, 46.3) (35.8, 42.0, 47.2) (36.4, 40.9, 46.2) (36.6, 41.7, 46.5)
LeViT 45.0 48.2 (42.3, 46.5, 50.5) (44.6, 47.9, 51.0) (41.6, 44.8, 49.7) (42.5, 45.9, 49.2)

4.4 Effectiveness of Transfer Attacks

In this subsection, we analyze the transfer attack effectiveness of each method
when the training is conducted to attack one victim model, named source
model, and the testing is conducted to attack a different victim model, named
target model.

Denote by FR; ; the transfer attack effectiveness when transferring from a
source model f; to a target model f; (f; # f;). For each method, we compute
FR; ; in the following steps: 1) conduct the training on the training dataset to
attack f;; 2) generate the perturbed testing images on the testing dataset; 3) use
the perturbed testing images to attack f; and compute FR; ; as the FR of f;.

Denote by @ = {f1,..., fe} the six victim models targeted in our experi-
ments. For each attack method, we measure its average transfer attack ef-
fectiveness when transferring from a source model f; € @ to the other victim
models f; € Q\ f; by Transy, = 1 ijeQ\fi FR; j, which is the average of FR; ;
when transferring from the source model f; to each of the other target models.
A higher Transy, means a better transfer attack effectiveness.

Table [3] reports the average transfer attack effectiveness of all the methods
when K =5 and £ € {2,6,10}. We can see that the Transy, of CK2 consistently
outperforms CK1, and both CK1 and CK2 achieve better Trans;, than the
corresponding single-UAP method. Moreover, as shown by the bold numbers
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(a) UAT-CK1, FR—(74.2, 73.9, 73.4), AD=0.06 (b) UAT-CK2, FR—(73.3, 71.5, 70.9), AD—O0. 30
0 ol

(g) NAG-CK1, FR=(68.8, 68.7, 68.5), AD=0.17 (h) NAG-CK2, FR— (69.3, 67.4, 65.2), AD=0.28

Fig. 1: The UAPs generated by CK1 and CK2, respectively, on ResNet-50 when K = 3
and £ = 6. (a), (c), (e) and (g) show the UAPs produced by CK1. (b), (d), (f) and (h)
show the UAPs produced by CK2. AD is the average diversity of the three UAPs. FR
show the fooling ratio of the three UAPs in the same subfigure.

in Tab. EL the highest Transy, is always achieved by a CK2 attack method.
These results demonstrate the outstanding performance of the proposed cocktail
attack framework in improving the transfer attack effectiveness of the single-UAP
methods.

We explain the superior transferability of CK2 as follows. First, due to the
good transferability of UAP , each of the K UAPs transfers well from
attacking the source model to the other target models. Second, since the K
UAPs are diversified, they tend to successfully transfer-attack different sets of
images. Third, gy also transfers well in selecting the most effective UAP to suc-
cessfully attack different models. In sum, CK2 achieves superior transferabil-
ity because it successfully attack the union of the images successfully transfer-
attacked by each of K UAPs. The better transferability of CK2 over CK1 is due
to the higher diversity of the UAPs trained by CK2.

4.5 The Diversity of UAPs: A Case Study

In this subsection, we conduct a case study in Fig. [1| to visualize the UAPs
produced by CK1 and CK2, respectively. For both CK1 and CK2, we adopt
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K = 3 and £ = 6, and use ResNet-50 as the victim model. Each of CK1 and
CK2 produces a set of K UAPs, denote by P, where every UAP in P is visualized
in the same way as [23,40].
We measure the diversity of the K UAPs by the average diversity (AD),
AD = (Tl) > £ D; j, where D; ; is the diversity between the pair of UAPs §;
2

and ¢; in P on the testing dataset. We compute D; ; by D; ; = 1 — Ve |

V.UV,
where V; and V; are the sets of testing images successfully attacked by d; |and <j5j|,
respectively. A larger D; ; means a greater difference between V; and Vj, which
implies a greater diversity between d; and ¢;, thus producing a higher AD.

In Fig. [T} each set of UAPs produced by CK1 shows similar visual patterns
and they have a small value of AD. Take Fig. [Ta] as an example, the three
UAPs generated by UAT-CKI1 are very similar in both global and local patterns.
Figure [Id and Fig. [Ie show similar results for the UAPs generated by DF-CK1
and COS-CKI1, respectively. Such results are also observed in some previous
works [14}/231/27,/40], which indicated that multiple independent runs of a single-
UAP method usually generate similar UAPs that tend to successfully attack
similar sets of images. This is the major cause for the small AD of the UAPs
generated by CK1. For NAG-CKI1, since many different UAPs can be sampled
from the generator trained by NAG, the UAPs in Fig. show a similar grid-
like global pattern but they have dissimilar local patterns. Therefore, NAG-CK1
achieves a higher AD compared to the other CK1 attack methods.

We can also see from Fig. [I] that each set of UAPs produced by CK2 shows
substantially different appearances and they have a much larger AD than the
UAPs generated by CK1. This is because CK2 generates a set of diversified
UAPs by training each UAP to attack a separate cluster of images S; € S.

As shown in the captions of subfigures in Fig. [I} the FR of the UAPs gen-
erated by CK1 is slightly larger than those generated by CK2. This can be
explained by the fact that each UAP generated by CK1 is trained on the entire
training dataset, but a UAP generated by CK2 is trained on a cluster of the
training dataset, which contains less training images. However, since the UAPs
generated by CK2 have a much larger AD than the UAPs of CK1, each UAP in
P generated by CK2 is able to successfully attack a large number of new images
that cannot be successfully attacked by the other UAPs in P. This explains the
experimental results in Sec. Sec. where the attack effectiveness of CK2
consistently outperforms CK1.

5 Conclusion

In this paper, we propose a novel cocktail attack framework that can be gener-
ally applied to existing single-UAP methods to significantly boost their attack
effectiveness while achieving a fast attack speed. The key idea is to simultane-
ously train a set of diversified UAPs and a selection neural network, and use
the selection neural network to choose the most effective UAP when attacking a
new target image. Extensive experiments show the superior performance of the
proposed cocktail attack framework.
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Appendix

A  The Dominated Classes of Diversified UAPs

In this subsection, we use the three diversified UAPs generated by UAT-CK2
as an example to investigate the distribution of images attacked by each of the
diversified UAPs. The pie chart in each subfigure of Fig. [2] shows the results for
a specific class. In each pie chart, the three regions in blue, orange and green
show the proportion of images attacked by the diversified UAPs 41,2 and d3,
respectively. The diversified UAPs d1, 2 and d3 are visualized in Fig. from
left to right.

=g

(a) Toaster (b) Dumbbell (c) Planetarium

(e) Custard apple (f) Knee pad (g) Ocarina (h) Tabby cat

(i) French loaf (j) Lorikeet (k) Seatbelt (1) Flute

5
8

5

(m) Pomeranian (n) Horizontal bar (o) Ring-binder (p) Head cabbage

Fig. 2: The proportion of images in the same class attacked by each of the diversified
UAPs. 41,02, 63 are the three UAPs in Fig. [Lb| (from left to right). The caption of each
subfigure is the name of an image class. The area of each coloured region shows the
proportion of images attacked by one UAP.
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The 1,000 classes of images in our dataset produce 1,000 pie charts, which
cannot be shown in the paper due to the limit of space. However, we discovered
that these classes generally fall into four typical categories, thus we show some
examples in each category in Fig.

The first category of classes, such as “Toaster”, “Dumbbell”, “Planetarium”
and “Car Wheel”, are shown in the first row of Fig. |2l For these classes, the
UAP 6, is selected by the selection neural network gy to attack most of the
images. Such classes are dominated by d1, because 47 is likely the most effective
in attacking the images in these classes. Similarly, the second category of classes
shown in the second row of Fig. |2 such as “Custard apple”, “Knee pad”, “Ocarina”
and “Tabby cat”, are dominated by d2. The third category of classes shown in the
third row of Fig. 2] are dominated by d3. The fourth category of classes shown in
the fourth row of Fig.[2|are not significantly dominated by any UAP, because the
proportions of images attacked by each of the three UAPs tend to be balanced.
This is because all the UAPs are comparably effective in attacking the images
in these classes, thus the selection neural network gy makes a more balanced
selection when attacking images in such classes.

The above results demonstrate an interesting class specific property of the
diversified UAPs trained by our cocktail attack framework. That is, each diver-
sified UAP is highly effective in dominating the attack of certain classes, and the
sets of classes dominated by different UAPs are different. Such a property is the
key to the outstanding performance of the proposed cocktail attack framework,
because, when the selection neural network gy chooses the most effective UAP
to attack each new image, the final set of successfully attacked images will be
the union of the images successfully attacked by every UAP.

B Attack Robustness

In this section, we investigate the robustness of different attack methods by eval-
uating their attack effectiveness in the presence of different defenses. Specifically,
we consider four image transformations-based defenses presented in |13], includ-
ing JPEG, Crop and rescale, total variance (TV) minimization and bit depth
reduction. Each of these defenses is applied on every perturbed image before
feeding it to the victim model. We adopt the default hyperparameters of these
defenses used in [13]. When applying a defense, a higher FR achieved by an
attack method indicates that the defense is less effective to the attack method,
which implies its higher attack robustness.

Table [4| reports the results on ResNet-50 and ViT when K = 5 and £ = 6.
Comparing to the FR when no defence is applied, the FR of all the attack
methods drops when a defense is applied. Nevertheless, CK2 still consistently
achieves the best FR in all cases. This is because, although the effectiveness of
every UAP is reduced by the defense, the set of images successfully attacked by
different UAPs are still diversified, thus the key mechanism of cocktail attack
still works to effectively improve the attack effectiveness.
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Table 4: The FR of all the attack methods achieved on ResNet-50 and ViT in the
presence of different defenses. We set K = 5 and £ = 6. Bold number marks the highest
FR in each row. Underlined number shows the runner up performance of the baseline
methods.

K=5,¢=6| Defenses GAP TDA (UAT, CK1, CK2) (DF, CK1, CK2) (COS, CK1, CK2) (NAG, CK1, CK2)
No defence 84.2 84.4 (73.6, 77.6, 87.6) (72.7, 76.6, 87.0) (66.6, 71.8, 80.5) (68.5, 75.7, 79.2)
JPEG 46.5 44.7 (36.3,42.8, 47.7) (34.2, 40.5, 46.8) (29.6, 34.4, 40.9) (31.6, 37.6, 42.3)

ResNet-50 | Crop and rescale 28.8 25.3 (22.2, 26.7, 30.4) (22.4, 27.4, 31.7)
TV minimization 35.9 37.3 (29.2, 32.1, 38.6) (28.5, 32.2, 39.2)
Bit depth reduction 45.7 45.3 (35.2, 40.4, 46.7) (36.8, 42.3, 47.5)

16.3, 22.9, 26.0
23.3, 26.4, 30.1

18.4, 23.8, 28.5)
25.2, 28.8, 33.2)

(
( (
( ) (
( ) (
(27.6, 33.6, 38.2)  (30.7, 37.0, 42.4)
No defence 83.7 84.4 (76.5,80.4, 88.9) (75.6,79.3, 88.3) (73.4,78.1, 86.2) (73.6, 80.3, 86.5)
JPEG 49.6 50.2 (40.5, 45.0, 52.3) (38.1, 45.8, 50.2) (37.6, 43.5, 48.0) (34.0, 41.4, 47.1)
ViT Crop and rescale 32.3 31.8 (27.8,29.5, 34.0) (25.2, 28.3, 33.2) (25.0, 28.1, 32.9) (24.4, 28.7, 31.3)
TV minimization 40.8 41.6 (35.2, 39.7, 43.4) (33.3, 38.0, 43.0) (34.6, 38.2, 42.1) (32.9, 37.3, 40.0)
Bit depth reduction 47.3 49.2 (39.7, 43.6, 51.4) (37.2, 44.0, 49.5) (36.3, 41.3, 47.5) (33.3, 39.8, 45.2)

C Training Efficiency

In this section, we discuss the training efficiency of the proposed cocktail attack
framework. Different from the classic single-UAP methods that train a single
UAP, our cocktail attack framework aims to train KX UAPs and the selection
neural network gg. Since gy is a lightweight SqueezeNet, the training of gy is not
an efficiency bottleneck.

However, the value of K affects the efficiency of our training. This is because,
as shown in our formulation in Eq. , for each training image we need to
compute the value of the loss function L(xz;,0;) K times by adding each of the
K perturbations to that image and then feeding the perturbed K images to the
victim model. As a result, for the proposed cocktail attack methods, the number
of images fed to the victim model in one training iteration is K times of the batch
size. Compared to the batch size b used by the single-UAP methods, we set the
batch size for cocktail attack methods to [%W due to the limited GPU memory.
In this way, the number of images used for forward-pass and back-propagation
in one batch of training iteration of our methods is approximately the same as b,
thus the training time of our methods for each batch is approximately the same
as the single-UAP methods. However, the total number of batches per epoch
for our methods is about K times of the corresponding single-UAP methods,
which causes the training time of CK2 to be approximately K times of the
corresponding single-UAP method when the same number of training epochs
are used.

The training time of CK1 is about 2K times of the corresponding single-UAP
method. Denote by F the training time of a single-UAP method, CK1 first trains
K UAPs by independently running the single-UAP method K times, which costs
K x E time. Then, CK1 takes another K x F time to solve the optimization
problem in Eq. . Therefore, the overall training time of CK1 is about 2K x E,
which is 2K times of the training time of the corresponding single-UAP method.

Table |5| reports the training time of different single-UAP methods and the
corresponding CK1 and CK2 attack methods when attacking ResNet-50 with
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Table 5: The training time (minutes) on ResNet-50 when £ = 6 and K € {1,3,5,7,9}.

K|(UAT, CK1, CK2) (DF, CK1, CK2) (COS, CK1, CK2) (NAG, CK1, CK2)
1] (43, 95, 54) (45, 98, 56) (42, 94, 55) (166, 221, 57)
3| (43,268, 143) (45,277, 150) (42, 261, 141) (166, 305, 144)
5| (43, 425,230)  (45,435,239) (42, 430,226) (166, 391, 232)
7 ( )
9] (

43,603, 315) (45, 615, 328) (42, 598, 311) (166, 469, 319
43,774, 405) (45,794, 414) (42, 757, 395) (166, 556, 406)

&=6and K € {1,3,5,7,9}. We can observe that the training time for CK1 and
CK2 are approximately 2K and K times that of the corresponding single UAP
method, such as UAT, DF and COS. This validates our analysis above.

We can also see in Tab. [5]that the training time of NAG-CK1 and NAG-CK2
does not align with our analysis. Because, the training time of NAG is dominated
by the time cost to train a generator of UAP. However, NAG-CK1 does not
independently train K generators; instead, it only trains a single generator to
sample K UAPs. Therefore, the training time of NAG-CK1 is less than 2K times
of NAG’s training time. The training time of NAG-CK2 is also much less than
K times of NAG’s training time. This is because NAG costs a lot of time to train
a generator, instead, NAG-CK2 only utilizes its fooling loss [29] as L (x;,d;) to
train go and UAPs.

In conclusion, although a larger value of K makes the training of the cock-
tail attack framework less efficient, UAPs are often trained offline in the litera-
ture [251/36,/411/45]. Therefore, the training time is not a big concern for attackers,
who will benefit from the fast attack efficiency of the trained UAPs. Moreover,
as shown by the experimental results in Fig. |3} using a small value of K =5 is
sufficient for CK2 to achieve significant attack effectiveness, indicating that the
additional offline training time of CK2 is worth the effort.

D Hyperparameter Analysis

In this section, we investigate the effect of the number of perturbations K on the
attack effectiveness of CK1 and CK2 when applied to each of the single-UAP
methods. We adopt the settings in Sec. to analyze the FR of each method
when training and testing are conducted to attack the same victim model.

Figure [3| shows the results of attacking the six victim models with £ = 6
and K € {1,3,5,7,9}. We only report the FR of the single-UAP methods when
K =1 because each of them only uses a single UAP to attack all target images.
As shown in Fig. each single-UAP method and its corresponding cocktail
attack methods achieve similar FR when K = 1. This is because, when K = 1,
the cocktail attack launched by CK1 and CK2 degenerates to the same single-
UAP attack as the corresponding single-UAP method.

We can also see that the FR of CK1 and CK2 improve significantly when
K increases. The reason is that each newly added UAP will successfully attack
more images that cannot be successfully attacked by the previous set of UAPs.
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Fig.3: The FR of the single-UAP methods and the corresponding cocktail attack
methods when attacking the six victim models. We use £ = 6 for all the experiments.
We report the FR of CK1 and CK2 at K € {1,3,5,7,9}. The dashed red line is an
auxiliary line to show the FR of the single-UAP method at K = 1.

However, when K > 5, further increasing the value of K does not significantly
improve the FR of CK1 and CK2. Since the set of successfully attacked images
is already large when K = 5, the number of new images successfully attacked by
adding more UAPs diminishes with the increase of K. In summary, we can con-
clude from Fig. [3| that the proposed cocktail attack framework can significantly
improve the attack effectiveness of a single-UAP method by using only a small
number of diversified UAPs.
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E Proof of NP-hardness

Theorem 1. The MIP problem in Eq. 1s NP-hard.

Proof. We prove the theorem by showing that an instance of the K-means clus-
tering problem [23] can be reduced to an instance of the MIP problem in poly-
nomial time.

An instance of the K-means clustering problem can be formulated as

K
Lo 3 Y fm il ®)
sHLyeesE -
j=1lz;€S;
where § = {S1,...,Sk} is a set of K non-overlapping clusters of a set of N

images, denoted by X = {z;}}¥,, and p; is the mean of the images in S;.

Next, we construct an instance of the MIP problem in polynomial time and
prove that its solution is exactly the same as the solution to the instance of the
K-means problem. The key idea is to construct a loss function

Ly(wi; 65) = llws — 511, (4)

which maps the tuple (z;,d;) to the squared Euclidean distance between x; and
;. We construct the loss function Lf(x;,d;) in polynomial time as follows.
First, we compute the squared difference matrix

H:(xi—(Sj)O(a:i—(Sj), (5)

where the operator o is the Hadamard product between two matrices. Second,
we construct a DNN f that takes H as the input and outputs the sum of all the
entries in H. This is done by first passing H through a convolutional layer that
maps H to itself, then using a fully connected layer to compute the sum of the
entries in H. By plugging L¢(z;,0;) = ||x; — §;]| into Eq. , we can construct
an instance of the MIP problem as

N K
min DO Al =517,

i=1 j=1
st. Ae{0,1}V*K

K
ZAi’j =1Vie {17...,N},

Jj=1

10;ll0 <&, V5 €{1,...,K},
which can be rewritten as

K
. _(S 2
o fuin SO i — 65017

j=1 JCiESj (7)
st |105llee <& V5eA{L,...,K},
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because A; ; = 1 means x; € S; and A; ; = 0 means z; € 5.

By substituting ¢; with p; and setting £ = +o00, Eq. will be the same as
Eq. . In this case, the solution to the instance of the MIP problem is exactly
the same as the solution to the instance of the K-means problem. In sum, the K-
means problem can be reduced in polynomial time to the MIP problem. Since the
K-means clustering problem is NP-hard [40]|, the MIP problem is also NP-hard.
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