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Abstract
The effectiveness of classificationmethods relies largely on the correctness of instance
labels. In real applications, however, the labels of instances are often not highly reliable
due to the presence of label noise. Training effective classifiers in the presence of label
noise is a challenging task that enjoys many real-world applications. In this paper, we
propose a Markov chain sampling (MCS) framework that accurately identifies misla-
beled instances and robustly learns effective classifiers. MCS builds a Markov chain
where each state uniquely represents a set of randomly sampled instances. We show
that the Markov chain has a unique stationary distribution, which puts much larger
probability weights on the states dominated by correctly labeled instances than the
states dominated by mislabeled instances. We propose a Markov Chain Monte Carlo
sampling algorithm to approximate the stationary distribution, which is further used to
compute the mislabeling probability for each instance, and train noise-resistant clas-
sifiers. The MCS framework is highly compatible with a wide spectrum of classifiers
that produce probabilistic classification results. Extensive experiments on both real
and synthetic data sets demonstrate the superior effectiveness and efficiency of the
proposed MCS framework.
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1 Introduction

The good performance of a classification method crucially relies on the correctness
of the labeled training data. Unfortunately, in real-world data the labels of instances
are usually corrupted by random noise, which largely limits the performance of con-
ventional machine learning methods. Training effective classifiers in the presence of
label noise is a challenging and urgent task of great practical importance.

The problem of learning with label noisewas first proved PAC learnable by Valiant
(1984) and Angluin and Laird (1988). Many related studies have been developed since
then. Themost straightforward idea is to comprehensively analyze the noise-tolerating
performance of existing classification algorithms (Bartlett et al. 2006; Frénay and Ver-
leysen 2014; Manwani and Sastry 2013), and select the ones that are relatively robust
against label noise. Nettleton et al. (2010) compared the effect of different types of
noise on conventional classificationmethods, and found that the Naïve Bayes classifier
is the most robust method against noise. However, according to the comprehensive
study by Frénay and Verleysen (2014), the performance of most conventional classi-
fication methods is not robust to label noise.

Some studies attempt to remove mislabeled instances and clean corrupted data
using the classification result of conventional classification algorithms (Delany and
Cunningham 2004; Wilson 1972; Cover and Hart 1967; Belur 1991). For example,
Thongkam et al. (2008) removed the instances misclassified by the support vector
machine trained on all the training data.Wilson (1972) proposed a kNN-based method
to filter out every instance whose label mismatches the majority labels of its neigh-
bours. The performance of such methods highly depends on the noise-tolerance of the
employed conventional classifier, whose classification result may be unreliable in the
presence of label noise (Frénay and Verleysen 2014).

There are also many methods that improve the classification performance by cus-
tomizing conventional classification models with additional assumptions on noise
distribution (Biggio et al. 2011; Lawrence and Schölkopf 2001; Yang et al. 2012;
Liu and Tao 2016). For example, Biggio et al. (2011) improved the robustness of
support vector machine by a kernel matrix correction method, which is based on the
assumption that the label of each training instance is independently flipped with a
fixed probability across the whole training data set. Yang et al. (2012) assumed an
expected mislabelling probability of every training instance, and applied stochastic
programming to improve the noise-tolerance of multiple kernel learning algorithms.
By assuming a class-conditional noise distribution, Liu and Tao (2016) developed a
noise-robust classifier based on density ratio estimation, which relies heavily on the
feature dimensionality and the width of estimation kernel. By assuming label noise is
asymmetric and class conditional, Scott et al. (2013) proposed a universally consis-
tent estimator of themaximal proportion of overlap between different class-conditional
distributions. Those methods achieve good noise-tolerating performance by making
strong assumptions on noise distribution. However, the good performance of these
methods is of little comfort when the assumptions of their methods do not apply to
the complex label noise in real-world scenarios.

Can we build a more general noise-resistant classification model without assuming
any specific noise distribution? In this paper, we provide an affirmative answer. Our
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approach follows a simple yet reasonable intuition. Correctly labeled data follows
a consistent distribution. Noise (that is, mislabeled data) is caused by diverse and
inconsistent mistakes and thus does not follow a consistent distribution. Therefore, a
model trained on a samplemay fit the correctly labeled data in another samplewell, but
may not fit the mislabeled noise data in another sample. By training a set of models on
a set of selected samples of data, we can infer the likelihood of a data instance being
correctly labeled by the proportion of the trained models that fit the data instance.
Importantly, this natural difference between noise data and clean data does not rely
on any specific data distribution, and can be used to effectively identify noise data.
Therefore, we can build a more general noise-resistant classification model without
assuming any specific distribution of the noise data instances.

In this paper, we tackle the challenging problem of classification in the presence
of label noise without assuming any specific data distribution. Our only assumption
is that all clean data is sampled from the same unknown distribution while the mis-
labeled data is mislabeled in various ways. In other words, we assume that various
mistakes may lead to mislabeled instances. We propose a Markov Chain Sampling
(MCS) framework that trains a set of classifiers on different sets of randomly sampled
training instances. By assembling the probabilistic outputs of the set of classifiers,
MCS learns the mislabeling probability of every instance, which is further applied for
label correction and noise-tolerant classifier training.

We make the following contributions.
First, we design a Markov chain to assemble the probabilistic outputs of a set of

classifiers. Each state of the Markov chain uniquely corresponds to a set of randomly
sampled training instances. We train a classifier for each state using the corresponding
training instances. The probabilistic outputs of the classifiers are used to compute the
transition probabilities of the Markov chain. Any classification model that produces
probabilistic classification results can be smoothly incorporated in the Markov chain.
This makes MCS compatible with a wide spectrum of conventional classification
algorithms.

Second, we show that the proposed Markov chain has a unique stationary distribu-
tion, which puts much larger probability weights on the states dominated by correctly
labeled instances than the states dominated by mislabeled instances. Based on the
stationary distribution, we further design an algorithm to compute the mislabeling
probability for each instance, and train noise-resistant classifiers.

Third, we design three methods to train noise-tolerating classifiers using the mis-
labeling probability of each instance in different ways. The first method trains the
final classifier after cleaning the data by removing the mislabeled data instances. The
second method trains the final classifier after cleaning the data by flipping the labels of
mislabeled data instances. The third method directly uses the mislabeling probability
as supervision information to train the final classification model. All methods achieve
superior classification performance under different types of label noise.

Last, we report an extensive experimental study on both synthetic and real-world
benchmark data sets. The results clearly show that the MCS framework achieves good
classification accuracy in the presence of label noise.

The rest of the paper is organized as follows. In Sect. 2, we define the problem
and review related works on classification with label noise. In Sect. 3, we introduce
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the MCS framework and prove the correctness and effectiveness of MCS. We present
comprehensive experimental studies in Sect. 4 and conclude the paper in Sect. 5.

2 Problem definition and related work

In this section, we first define the problem of classification with label noise. Then, we
review the related work.

2.1 The problem of classification with label noise

Let D be the distribution of a pair of random variables (X ,Y ) ∈ X ×{+1,−1}, where
X ⊆ R

d is a d-dimensional feature space, X ∈ X is a feature and Y ∈ {+1,−1} is
the label of X . Denote by S = {(x1, y1), . . . , (xn, yn)} a sample of n instances drawn
i.i.d. from D. For each instance (xi , yi ) ∈ S, yi is the true label of xi . Here, a true
label is the ground truth label that is not affected by any label noise.

In many real-world applications, the observed labels of instances may be
corrupted by noise. We model this by a sample of observed instances Ŝ =
{(x1, ŷ1), . . . , (xn, ŷn)}, where ŷi is the observed label of instance (xi , yi ). An instance
(xi , ŷi ) ∈ Ŝ is called a positive instance if yi = +1, a negative instance if yi = −1, a
correctly labeled instance if yi = ŷi , and a mislabeled instance if yi �= ŷi .

Denote by Ŝ+ = {(xi , ŷi ) ∈ Ŝ | yi = 1} and Ŝ− = {(xi , ŷi ) ∈ Ŝ | yi = −1} the
set of positive instances and the set of negative instances in Ŝ, respectively. Denote by

ρ+ = |{(xi ,ŷi )∈Ŝ+|ŷi=−1}|
|Ŝ+| and ρ− = |{(xi ,ŷi )∈Ŝ−|ŷi=1}|

|Ŝ−| the proportions of mislabeled

instances in Ŝ+ and Ŝ−, respectively. Similar to the typical tasks of classification with
label noise (Liu and Tao 2016; Natarajan et al. 2013), we assume that the proportion
of mislabeled instances is less than or equal to 50%, that is, ρ+ ≤ 0.5 and ρ− ≤ 0.5.
Please note that by assuming the two proportion rates at least 0.5, we do not assume
we have the values of ρ+ or ρ−. Indeed, we do not assume we can know Ŝ+ or Ŝ−
exactly.

Now, we define the problem of Classification with Label Noise (CLN).

Problem 1 (Classification with Label Noise) Given a set of observed instances Ŝ =
{(x1, ŷ1), . . . , (xn, ŷn)} that satisfies ρ+ ≤ 0.5 and ρ− ≤ 0.5, the problem of clas-
sification with label noise (CLN for short) is to train a classification model M∗ that
predicts the true label of any feature x ∈ X .

The CLN problem is challenging, since little prior knowledge on the noise distri-
bution is available and any instance in Ŝ may be mislabeled.

2.2 Related work

Classification with label noise is a challenging task that attracts much research atten-
tion. The existing studies can be grouped into three major categories: the robust model
methods, the data cleaningmethods, the noise-tolerantmethods and the crowdsourcing
methods. We review the four categories briefly as follows.
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2.2.1 Robust model methods

The robust model methods comprehensively study the robustness of different clas-
sification models in the presence of label noise, and select the model with the best
noise-tolerating performance (Manwani andSastry 2013;Nettleton et al. 2010; Folleco
et al. 2008).

Manwani and Sastry (2013) analyzed the noise-tolerating performance of the
empirical risk minimization framework with different loss functions for the binary
classification problem. According to their study, conventional loss functions, such as
log loss and hinge loss, do not perform well with corrupted instance labels. The 0-
1 loss achieves the best noise-tolerating performance, however, it is non-convex and
intractable in practice. Ghosh et al. (2015) assumed the noise-free data to be separable,
and proved a sufficient condition for risk minimization loss functions, such as sigmoid
loss, ramp loss and probit loss, to be tolerant to random label noise. Patrini et al.
(2016) proved that stochastic gradient descent and proximal methods can be adapted
with minimal effort to train robust classifiers using asymmetric noisy labels. They also
showed that most model losses are robust to a data-dependent label noise. Nettleton
et al. (2010) systematically compared the effect of label noise and feature noise on
four different classificationmodels, namely the Naïve Bayes model (John and Langley
1995), the C4.5 algorithm (Quinlan 2014), the IBK instance-based model (Aha et al.
1991) and the Support Vector Machine (SVM) (Vapnik 2013). They found that the
Naïve Bayes model is most robust against noise. Long and Servedio (2008) studied
the effect of random classification noise on a broad class of boosting algorithms. They
showed that the widely used boosting methods, such as AdaBoost and LogitBoost,
are highly susceptible to random classification noise. Folleco et al. (2008) showed
that imbalanced or skewed data sets may aggravate the influence of label noise. They
studied the robustness performance of eleven different commonly used classifiers in
imbalanced noisy data sets. According to their experiment results, all classifiers are
affected by label noise to some extent, and the Random Forest method (Breiman 2001)
achieves the best noise-tolerating performance.

It isworthwhile to comprehensively study the noise-tolerating performance of exist-
ing conventional classification methods.We can conclude from these studies that most
conventional classificationmethods are not robust to label noise (Frénay andVerleysen
2014).

2.2.2 Data cleaningmethods

The data cleaning methods improve the classification performance of conventional
classification models by training classifiers on the data that is cleaned by filtering
out or relabelling the mislabeled data instances (Khoshgoftaar and Rebours 2004;
Thongkam et al. 2008; Cover and Hart 1967; Belur 1991; Wilson 1972; Guyon et al.
1994). There are three sub-groups in this category, namely the classification filtering
methods, the kNN based methods, and the threshold-based methods.

The classification filtering methods (Frénay and Verleysen 2014; Gamberger et al.
1999; Khoshgoftaar and Rebours 2004) filter out the instances misclassified by a
classifier that is trained on label-corrupted data. Thongkam et al. (2008) trained a
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SVMon the label-corrupted data and removed the instancesmisclassified by the SVM.
Miranda et al. (2009) extended the work of Thongkam et al. (2008) by employing four
classifiers to vote for the mislabeled instances. However, filtering out all the instances
that are misclassified by a single classifier is rigid and risky, since a single classifier
learned from the entire set of label-corrupted data is usually unreliable (Frénay and
Verleysen 2014). The proposed MCS method also employs the classifiers trained on
label-corrupted data to identifymislabeled instances.However, unlike the conventional
classification filtering methods, the proposed MCS method trains a set of classifiers
on selected samples of the original label-corrupted data, and learns a more reliable
mislabeling probability of every instance by using a Markov chain to assemble the
probabilistic outputs of the set of classifiers.

The kNN-based methods use a kNN classifier enhanced by noise-tolerating rules
to remove or relabel misclassified instances. Delany and Cunningham (2004) pro-
posed the Blame-Based Noise Reduction method to filter out the instances that cause
the misclassification of the other instances. Wilson (1972) proposed to filter out the
instances whose labels mismatch the majority label of their neighbours. Wilson and
Martinez (1997, 2000) comprehensively investigated the noise-tolerating performance
of kNN-based data filtering methods. Most kNN-based methods are heuristic whose
performance are significantly affected by the selection of the parameter k.

The threshold-based methods (Sun et al. 2007; Gamberger et al. 1996; Gamberger
andLavrač 1996) calculate a (heuristic)mislabeling probability score for each instance
and filter out the instances whose score pass a certain threshold. For suchmethods, it is
often difficult to find a proper threshold that effectively distinguishes true exceptions
from mislabeled instances (Frénay and Verleysen 2014).

2.2.3 Noise-tolerant methods

The noise-tolerant methods (Lawrence and Schölkopf 2001; Liu and Tao 2016;
Natarajan et al. 2013; Stempfel and Ralaivola 2009) build inherently noise-tolerant
classifiers by modeling the distribution of label noise before or during model
training.

Lawrence andSchölkopf (2001) proposedKLDA tomodel the generating process of
class-conditional label noise as one component of a generative classification model.
By extending the conventional noise-free SVM functional to a tailored nonconvex
functional, Stempfel and Ralaivola (2009) developed SLOPPYSVM to learn robust
SVMclassifiers in the presence of class-conditional label noise. Natarajan et al. (2013)
studied the class-dependent random label noise in the binary classification problem.
They proposed two methods that modify any given surrogate loss function to make
the classifier more robust against label noise. Liu and Tao (2016) studied the same
type of label noise and applied density ratio estimation to estimate the noise rate
and improve classification performance. As claimed by Liu and Tao (2016), however,
the classification performance of their method relies crucially on the accuracy of
density ratio estimation, which may be affected by high feature dimensionality and
inappropriate estimation kernels.

In summary, the good classification performance of noise-tolerant methods is usu-
ally based on a complex classification model that is supported by strong model
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assumptions. A highmodel complexity increases the chance of over-fitting. The strong
assumptions often limit the ability of generalization in dealingwith complex label noise
in real-world scenarios.

2.2.4 Crowdsourcing methods

In terms of identifying true labels of instances, ourwork is also related to a conventional
crowdsourcing task, that is, to find the true label of an instance by collecting multiple
labels with label noise (Li 2015; Vaughan 2018; Sheng et al. 2008).

Sheng et al. (2008) developed a majority voting method and studied its effective-
ness on improving the quality of labels that are repeatedly collected from unreliable
labelers. However, as claimed by Karger et al. (2011), majority voting is error-prone
and inefficient because it treats the labels provided by each labeler equally. To tackle
this problem, many effective improvements were developed to jointly estimate the
reliabilities of labelers and the labels of instances (Li 2015; Whitehill et al. 2009; Liu
et al. 2012; Zhou et al. 2012; Raykar et al. 2010).

The above crowdsourcing methods are effective in finding the true label of an
instance when the instance is associated with multiple labels. However, these methods
cannot be straightforwardly extended to train a robust classifier in the presence of
label noise, because, for the task of classification with label noise, each instance is
only associated with a single unreliable label.

3 TheMarkov chain sampling framework

In this section, we introduce the Markov Chain Sampling (MCS) framework to solve
the CLN problem. The key idea is to identify the mislabeled instances in Ŝ by assem-
bling the outputs of a set of classifiers. The set of classifiers are trained on different
subsets of Ŝ that are obtained by sampling a carefully designed Markov chain with
random walk. Each state of the Markov chain uniquely corresponds to one of the

2|Ŝ| − 1 non-empty subsets of instances of Ŝ.
In the following, we first introduce the structure of the Markov chain and prove

that the proposed Markov chain has a unique stationary distribution. Then, we prove
that the stationary distribution is effective in identifying the mislabeled instances and
present three methods to train the classification model M∗. Finally, we introduce
a MCMC sampling algorithm to efficiently approximate the stationary distribution.
Table 1 shows the frequently used notations.

3.1 The structure of theMarkov chain

We consider a discrete time Markov chain, denoted by C , that consists of the 2|Ŝ| − 1

discrete states. Each state is uniquely associated with one of the 2|Ŝ| − 1 non-empty
subsets of Ŝ. We assign a unique index to each non-empty subset of Ŝ and denote the
i th subset by Ŝi ⊆ Ŝ. The state uniquely associatedwith Ŝi is denoted by ci ∈ C , which
is a binary indicator vector with |Ŝ| dimensions. The kth dimension of ci , denoted by
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Table 1 Frequently used notations

Notation Description

| · | The set volume operator

Ŝ The set of observed instances

C The discrete time Markov chain

ci The i th state of the Markov chain C

Ŝi The subset of observed instances associated with state ci

Mi The i th model that is trained on Ŝi
M∗ The final classifier of the MCS framework

P The transition matrix of the Markov chain C

cik in Eq. 1, indicates whether the kth instance (xk, ŷk) is contained by the i th subset
of instances Ŝi . We can write Ŝi = {(xk, ŷk) ∈ Ŝ | cik = 1}.

cik =
{
1, if (xk, ŷk) ∈ Ŝi
0, if (xk, ŷk) /∈ Ŝi

(1)

For two states ci and c j , a transition from ci to c j indicates a transition from Ŝi to Ŝ j .
We perform such transition in two steps. First, we train a conventional classification
modelMi on Ŝi , and useMi to compute the probability of predicted label for every
instance in Ŝ. Second, we obtain Ŝ j by sampling instances from Ŝ according to the
probabilities of predicted labels computed by Mi .

Conventional models that produce positive probabilities of predicted labels can
all be used to train Mi . In this paper, we use Kernelized Support Vector Machine
(KSVM) (Scholkopf and Smola 2001) with Platt scaling and Logistic Regression
(LR) (Hosmer Jr et al. 2013) to demonstrate the feasibility and effectiveness.

The details of the sampling method are as follows.
Given an instance (xk, ŷk), let ỹik ∈ {+1,−1} represent the predicted label of

feature xk ∈ X that is computed by model Mi . If ỹik = ŷk , we say model Mi fits
(xk, ŷk); if ỹik �= ŷk , we sayMi does not fit (xk, ŷk).

Denote by P(ỹik | xk, ci ) the probability that model Mi predicts label ỹik for
feature xk . For each instance (xk, ŷk) in Ŝi , we define P(ỹik = ŷk | xk, ci ) as the
probability that Mi fits (xk, ŷk).

Then,we obtain Ŝ j by sampling each instance (xk, ŷk) ∈ Ŝwith probabilityP(ỹik =
ŷk | xk, ci ). That is, P((xk, ŷk) ∈ Ŝ j | ci ) = P(ỹik = ŷk | xk, ci ).

In this way, ifMi fits (xk, ŷk), (xk, ŷk) is sampled with probability P(ỹik | xk, ci );
otherwise, it is sampled with probability 1 − P(ỹik | xk, ci ). Since P(ỹik | xk, ci ) >

1 − P(ỹik | xk, ci ), the instance that Mi fits has a higher probability to be sampled
than the instance that Mi does not fit.

The intuition of the above sampling process is that, since Mi is trained using all
instances in Ŝi , P(ỹik = ŷk | xk, ci ) can be regarded as the belief that (xk, ŷk) is
correctly labeled. This belief is supported by all instances in Ŝi .
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However, since Ŝi may contain some mislabeled instances, the belief P(ỹik = ŷk |
xk, ci )may not be fully reliable. To tackle this problem,we embedP(ỹik = ŷk | xk, ci )
into a carefully designed Markov chain and prove in Sect. 3.2 that the stationary
distribution of the Markov chain is reliable and effective in identifying mislabeled
instances.

Next, we define the transition probability P(c j | ci ) of the Markov chain C .
Recall that c jk = 1 when (xk, ŷk) ∈ Ŝ j , it follows that P(c jk = 1 | ci ) = P(ỹik =

ŷk | xk, ci ). This means c jk is a random variable following the Bernoulli distribution
c jk ∼ Bern(P(c jk = 1 | ci )), and c j is the ensemble of |Ŝ| independent random
variables that follow Bernoulli distributions. The transition probability from ci to c j
is

P(c j | ci ) =
|Ŝ|∏
k=1

P(c jk = 1 | ci ) (2)

So far,we have defined the discrete states ofC and the transition probability between
each pair of states in C . The transition matrix of C , denoted by P , is a square matrix,
where the entry at the i th row and the j th column is Pi j = P(c j | ci ).

Next, we show that the proposed Markov chain C has a unique stationary distribu-
tion.

Theorem 1 The proposed Discrete Time Markov Chain C has a unique stationary
distribution πππ .

Proof We prove this by showing that the proposed Markov chain C is aperiodic and
positive recurrent.

(Aperiodic) Since model Mi produces positive probabilities for predicted labels,
Pii > 0 for all i . Therefore, every state in C has a self-loop. Thus C is aperiodic.

(Positive recurrent) By Definition 3.1 in (Gilks et al. 1995), since Pi j > 0 for
all i and j , the proposed Markov chain C is irreducible. According to Lemma 6.3.5
in (Grimmett and Stirzaker 2001), since C is irreducible and has a finite number of
states,C is a positive recurrentMarkov chain. According to Theorem3.1 in (Gilks et al.
1995), every aperiodic and positive recurrent Markov chain has one unique stationary
distribution πππ . �	

3.2 Why does stationary distribution work?

In this section,we prove that the stationary distributionπππ ofC is effective in identifying
the mislabeled instances in Ŝ.

Without loss of generality, we divide the states in the Markov chain C into two
subsets. The set of good states, denoted by Cg , is the set of states dominated by
correctly labeled instances. The set of bad states, denoted by Cb, is the set of states
dominated by mislabeled instances.

Denote by P(Cg | ci ) = ∑
j :c j∈Cg P(c j | ci ) the probability of jumping from a

state ci ∈ C to a good state, and by P(Cb | ci ) = ∑
j :c j∈Cb P(c j | ci ) the probability

of jumping from ci ∈ C to a bad state.
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For a good state ci ∈ Cg , since most correctly labeled instances consistently follow
the same distribution, the corresponding model Mi has a high probability to fit most
of the correctly labeled instances in Ŝ. Recall that an instance thatMi fits has a higher
probability to be sampled than an instance that Mi does not fit, the correctly labeled
instances have a much higher probability to be sampled than the mislabeled instances.
Therefore, from a good state ci ∈ Cg , the probability of sampling a correctly labeled
instance is much greater than the probability of sampling a mislabeled instance. Thus,
we have a much higher probability of jumping to a good state than to a bad state. In
other words, the ratio P(Cg |ci∈Cg)

P(Cb|ci∈Cg)
is large.

However, for a bad state c j ∈ Cb, the corresponding model M j does not have a
high probability to fit most of the mislabeled instances in Ŝ. This is because the noise
data instances are more often than not corrupted by diverse corruption factors, thus
they do not consistently follow the same data distribution. Therefore, from a bad state
c j ∈ Cb, the probability of sampling a mislabeled instance may not be greater than
the probability of sampling a correctly labeled instance. Recall that P(Cg | ci ∈ Cg)

is much larger than P(Cb | ci ∈ Cg), the ratio of
P(Cb|c j∈Cb)

P(Cg |c j∈Cb)
is much smaller than

P(Cg |ci∈Cg)

P(Cb|ci∈Cg)
.

Inspired by the above insight, we make the following assumption.

P(Cb | c j ∈ Cb)

P(Cg | c j ∈ Cb)

 P(Cg | ci ∈ Cg)

P(Cb | ci ∈ Cg)
(3)

Since P(Cg | ci ) + P(Cb | ci ) = 1 and P(Cg | c j ) + P(Cb | c j ) = 1, we can
derive from Eq. 3 that

P(Cb | ci ∈ Cg) 
 P(Cg | c j ∈ Cb) (4)

Next, we prove that, according to the stationary distributionπππ of the Markov chain
C , the probability that a random walk visits the good states of C is larger than the
probability of visiting the bad states of C .

Theorem 2 Denote by πππ i and πππ j the i th and the j th entries of the stationary dis-
tribution πππ of the Markov chain C, respectively. If Eq. 4 holds, then

∑
i :ci∈Cg πππ i �∑

j :c j∈Cb πππ j .

Proof Denote by P the transition matrix of the Markov chain C . Since πππ is the sta-
tionary distribution of C , πππ = πππ P .

Therefore, denote by πππh the hth entry of πππ , the following equation holds for any
ch ∈ C .

πππh =
∑

i :ci∈Cg

P(ch | ci ∈ Cg)πππ i +
∑

j :c j∈Cb

P(ch | c j ∈ Cb)πππ j
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Therefore, we have

∑
h:ch∈Cg

πππh =
∑

h:ch∈Cg

⎛
⎝ ∑

i :ci∈Cg

P(ch | ci ∈ Cg)πππ i +
∑

j :c j∈Cb

P(ch | c j ∈ Cb)πππ j

⎞
⎠

=
∑

i :ci∈Cg

P(Cg | ci ∈ Cg)πππ i +
∑

j :c j∈Cb

P(Cg | c j ∈ Cb)πππ j

Thus, the following equation follows.

∑
i :ci∈Cg

(
1 − P(Cg | ci ∈ Cg)

)
πππ i =

∑
j :c j∈Cb

P(Cg | c j ∈ Cb)πππ j

Since ∀ci ∈ Cg, 1 − P(Cg | ci ∈ Cg) = P(Cb | ci ∈ Cg), we have

∑
i :ci∈Cg

P(Cb | ci ∈ Cg)πππ i =
∑

j :c j∈Cb

P(Cg | c j ∈ Cb)πππ j (5)

Define P∗(Cb | ci ∈ Cg) = maxci∈Cg P(Cb | ci ∈ Cg), it follows from Eq. 4

P(Cg | c j ∈ Cb)

P∗(Cb | ci ∈ Cg)
� 1

Then, we can derive from Eq. 5

∑
i :ci∈Cg

P(Cb | ci ∈ Cg)

P∗(Cb | ci ∈ Cg)
πππ i =

∑
j :c j∈Cb

P(Cg | c j ∈ Cb)

P∗(Cb | ci ∈ Cg)
πππ j

�
∑

j :c j∈Cb

πππ j

Consider ∑
i :ci∈Cg

πππ i �
∑

i :ci∈Cg

P(Cb | ci ∈ Cg)

P∗(Cb | ci ∈ Cg)
πππ i ,

we have ∑
i :ci∈Cg

πππ i �
∑

j :c j∈Cb

πππ j

�	

According to Theorem 2, the sum of the probabilities of the good states in the
stationary distribution of C is much larger than that of the bad states. Therefore, we
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can easily identify the correctly labeled instances and mislabeled instances by the
expectation of c over the stationary distribution πππ , that is,

c =
∑
i :ci∈C

ciπππ i (6)

where the kth entry of c, denoted by c(k), represents the porbability that instance
(xk, ŷk) ∈ Ŝ is correctly labeled. Apparently, an instance that is always contained by
many good states has a larger probability to be correctly labeled than an instance that
is always contained by bad states.

The expectation c can be used in three different ways to train the final classification
model M∗.

– The discarding method trains M∗ on the data set that is obtained by removing
every instance (xk, ŷk) ∈ Ŝ whose c(k) is smaller than a given threshold α.

– The flipping method trainsM∗ on the data set that is obtained by flipping the label
of every instance (xk, ŷk) ∈ Ŝ whose c(k) is smaller than a given threshold α.

– The weighting method uses c as the importance weight of every instance to train
M∗.

As demonstrated later in Sect. 4, all these methods achieve state-of-the-art classi-
fication performance.

A typical way to obtain the stationary distribution πππ is to solve the linear equation

πππ P = πππ . However, since the Markov chain C has 2|Ŝ| − 1 states, it is intractable
to compute and store the full transition matrix P . Therefore, we cannot obtain πππ by
directly solving the equation πππ P = πππ .

Next, we introduce the Markov Chain Monte Carlo (MCMC) sampling algorithm
that approximates πππ by sampling the proposed Markov chain without explicitly com-
puting the full transition matrix P .

3.3 Approximation of the stationary distribution

According to Grimmett and Stirzaker (2001), the stationary distribution πππ of the
Markov chain C can be approximated by iteratively sampling the states of C using
random walk.

Since we have no prior knowledge on the noise distribution in Ŝ, a good starting
state to begin random walk is the state containing all instances in Ŝ. We denote this
state by c1 = 1, which is a |Ŝ|-dimensional vector of all 1’s.

Starting from a state ci ∈ C (i ≥ 1), we sample the next state ci+1 ∈ C in the
following steps. First, we train a model Mi on the set of instances Ŝi and compute
the probability P(ỹk = ŷk | xk, ci ) for each instance (xk, ŷk) ∈ Ŝ. Second, we
obtain the set of instances Ŝ j by sampling each instance (xk, ŷk) ∈ Ŝ with probability
P(ỹk = ŷk | xk, ci ), and get the next state c j by setting c jk = 1 for each (xk, ŷk) ∈ Ŝ j .

It is possible that Ŝ j = ∅. In this case, we simply redo the sampling until Ŝ j �= ∅.
However, since P(Ŝ j = ∅) = ∏n

k=1(1 − P(ỹk = ŷk | xk, ci )), which decreases
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Algorithm 1Markov Chain Monte Carlo Sampling Method

Input: The set of label-corrupted instances Ŝ.
Output: The approximated stationary distribution π̂ππ .
1: Initialization: i ← 1, c1 ← 1, C ← ∅.
2: for i ≤ N do
3: Train modelMi on Ŝi = {(xk , ŷk ) ∈ Ŝ | cik = 1}.
4: j ← i + 1, c j ← 0.

5: for each (xk , ŷk ) ∈ Ŝ do
6: Set c jk = 1 with probability P(ỹk = ŷk | xk , ci ).
7: end for
8: if

∑
k c jk > 0 then

9: C ← C ∪ c j .
10: i ← i + 1.
11: end if
12: end for
13: Compute π̂ππ by the distribution of the states in C.
14: return π̂ππ .

exponentially with respect to the volume of Ŝ, the probability that we have to redo the
sampling is very small.

Algorithm 1 shows the details of the proposed MCMC sampling method. In step 3,
we start from a state ci , and train a modelMi on the corresponding set of instances Ŝi .
In steps 5–7, we perform a transition from the state ci to the next state c j , j = i +1 by
sampling the set of instances Ŝ j from Ŝ. To obtain Ŝ j , we useMi to compute the prob-
ability P(ỹk = ŷk | xk, ci ), and sample (xk, ŷk) ∈ Ŝ according to P(ỹk = ŷk | xk, ci ).
After repeating the above sampling process to sample N times, we use the empirical
distribution of the sampled states as the approximated stationary distribution.

The proposed MCMC sampling method approximates the stationary distribution
without explicitly computing the full transition matrix P . The time complexity is only
O(NT ), where T is the training time of model Mi and N is the sampling size.

As demonstrated by the experiments in Sect. 4, the performance of the proposed
method is scalable with respect to the sample size N , and N = 200 is good enough to
achieve a better classification performance than the state-of-the-art methods.

4 Experiments

In this section, we evaluate the performance of our proposed MCS framework and
compare it with the state-of-the-art methods including (1) Kernelized Support Vector
Machine (KSVM) (Scholkopf and Smola 2001); (2) C-Support Vector Classification
Filter (C-SVCF) (Thongkam et al. 2008); (3) Kernel Fisher Discriminant (KLDA)
(Lawrence and Schölkopf 2001); (4) the importance re-Weighting method (IW�) that
estimates noise rate by cross-validation (Liu and Tao 2016); and (5) the importance
re-Weighting method (eIW�) that estimates noise rate jointly (Liu and Tao 2016).
We use the LIBSVM (Chang and Lin 2011) implementation of KSVM and carefully
implement C-SVCF in MATLAB R2015a. The code for IW� and eIW� is provided
by Liu and Tao (2016).
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Since most compared methods are based on SVM, for the fairness of comparison,
we use KSVM (Scholkopf and Smola 2001) to train each model Mi and the final
model M∗ in the MCS framework.

As introduced in Sect. 3.2, we train M∗ by three different methods. This derives
three different versions of theMCS-basedmethods, denoted byMCS-KSVMD,MCS-
KSVMF and MCS-KSVMW, which trainM∗ by the discarding method, the flipping
method and the weighting method, respectively.

All compared methods are evaluated with default parameter settings. For the pro-
posed MCS-based methods, we use N = 200, α = 0.5. The effects of parameters N
and α are discussed in Sect. 4.2.

All experiments are conducted usingMATLABR2015a on a PC that runsWindows
7 with an Intel Core i7-3770 CPU (3.40 GHz) and 16 GB main memory.

4.1 Data sets and evaluationmetrics

We use the same UCI benchmark data sets used by Cawley and Talbot (2006), Liu and
Tao (2016) and Natarajan et al. (2013) to evaluate the performance of all methods.
The statistics of the data sets are shown in Table 2.

To generate class-conditional label noise, we randomly flip the labels of train-
ing instances according to the noise rate, denoted by a tuple ρρρ = (ρ+, ρ−).
We conduct experiments on seven different noise rates, namely ρρρ0 = (0.0, 0.0),
ρρρ1 = (0.1, 0.1), ρρρ2 = (0.2, 0.2), ρρρ3 = (0.3, 0.3), ρρρ4 = (0.4, 0.4), ρρρ5 = (0.1, 0.3)
and ρρρ6 = (0.3, 0.1). ρρρ0 is the setting for no label noise, ρρρ1,ρρρ2,ρρρ3 and ρρρ4 are the
settings for balanced label noise,ρρρ5 andρρρ6 are the settings for unbalanced label noise.

To further evaluate the performance of all compared methods under adversarial
noise, we employ the ALFASVMLib toolbox developed by Xiao et al. (2015) to
generate 4 types of adversarial label noise, that is, γγγ 1 = ALFA attack, γγγ 2 = far first
attack, γγγ 3 = nearest first attack, γγγ 4 = random attack.

For each data set, we randomly select 75% of the instances as training data, and
use the rest 25% instances are used as testing data. Only the training data is corrupted

Table 2 The statistics of the UCI benchmark data sets

Data set #Features #Positive instances #Negative instances #Total instances

Breast cancer 9 77 186 263

Heart 13 120 150 270

Diabetis 8 268 500 768

German 20 300 700 1000

Splice 60 1344 1647 2991

Waveform 21 1647 3353 5000

Banana 2 2376 2924 5300

Ringnorm 20 3664 3736 7400

Twonorm 20 3703 3697 7400
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by label noise. On each data set, we run every compared method 50 times and report
the average performance, the variance and the p value.

The classification performance of all compared methods are evaluated by the same
evaluation metric used by Liu and Tao (2016), that is

Accuracy = #correctly classified instances

#all instances

For the data cleaning methods C-SVCF andMCS-KSVMD that remove mislabeled
instances, we further evaluate the data cleaning performance by the following two
standard evaluation metrics (Frénay and Verleysen 2014).

ER1 = #correctly labeled instances that are removed

#correctly labeled instances

ER2 = #mislabeled instances that are not removed

#mislabeled instances

ER1 is the error rate of removing correctly labeled instances. ER2 is the error rate
of retaining mislabeled instances. For both ER1 and ER2, a smaller value indicates a
better performance.

4.2 Effect of parameters

In this section, we analyze the effect of parameters N and α on the MCS-KSVMD
method. Since all MCS-based methods achieve comparable performance that are
highly stable with respect to the parameters N and α, we use MCS-KSVMD as
an representative and analyze its performance in this subsection. A comprehensive
evaluation of all MCS-based methods is presented later in Sect. 4.3.

Figure 1 shows the effect of N on the accuracy of MCS-KSVMD. We can see that
the accuracy on the large data sets, such as Splice, Waveform, Banana, Ringnorm and
Twonorm, are more stable than the accuracy on the small data sets, such as Breast
cancer, Heart, Diabetis and German. The reason why the accuracy is less stable on
small data sets is that a small data set provides less training data in Ŝi . When Ŝi is
small, the modelMi may overfit a small subset of the correctly labeled instance, and
may not fit the other correctly labeled instances well. In such a case, our assumption
in Eq. 3 may not hold quite well, which leads to degenerated stableness of accuracy.

We can also see in Fig. 1 that the accuracy of MCS-KSVMD increases when N
increases from 1 to 40. This is because, when N increases, the MCMC sampling
method in Algorithm 1 samples more states, thus computes a better approximation of
the stationary distribution πππ . When N > 40, the accuracy converges on most of the
data sets. According to the results in Fig. 1, we set N = 200 as the default parameter
for all MCS-based methods in the rest of the experiments.

The default sample size N = 200 is extremely small comparing to 2|Ŝ| − 1, the
total number of states of theMarkov chainC . We study this phenomenon by analyzing
the influence of N on the set of instances that remains after MCS-KSVMD removes
every instance (xk, ŷk) ∈ Ŝ whose c(k) is smaller than α.
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Fig. 1 The effect of parameter N on the accuracy of MCS-KSVMD. The parameters are set to ρρρ1, α = 0.5
and N = {1, 5, 10, 20, 40, 60, 80, 100, 125, 150, 175, 200, 225, 250}

Denote by bN a binary indicator vector induced by c obtained at the N th iteration
of MCS-KSVMD. The kth entry of bN , denoted by bN (k), is defined as

bN (k) =
{
1, if c(k) ≥ α

0, if c(k) < α
(7)

The non-zero entries and zero entries of bN identify the set of remaining instances
and the set of removed instances, respectively.

To analyze the convergence of bN , we show the L1-distance between bN (N ≤
1000) and b1000 in Fig. 2. We can see that bN converges fast when N increases from
1 to 40, and the L1-distance between b200 and b1000 is very small. This means the
set of remaining instances when N = 200 is quite similar with the set of remaining
instances when N = 1000. Since the final classification model M∗ is trained on
the set of remaining instances, the classification accuracy when N = 200 is close to
the classification accuracy when N = 1000. As a result, bN converges fast when N
increases. Therefore, the classification accuracy of MCS-KSVMD converges fast as
well.

There are two possible reasons why bN converges fast. First, for any model Mi ,
most of the instances are far from the decision boundary ofMi in the high dimensional
feature space. Each of these instances is either sampled with a very high probability if
Mi fits it, or sampled with a very low probability ifMi does not fit it. Therefore, the
randomwalk conducted by theMCMC sampling method focuses on visiting the states
that are dominated by the instances far from the decision boundary of Mi , and most

of the 2|Ŝ| − 1 states of C have an extremely low probability to be visited. Second,
since most of the visited states are dominated by the same set of instances that are far
from the decision boundaries, the models of these states produce similar classification
results and sample probabilities for most of the instances that are far from the decision
boundaries. As a result, many transition probabilities are close to zero in practice and
the state transitions of the MCMC method tend to form a clique. Therefore, a small
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Fig. 2 The influence of N on the L1 distance between bN (N ≤ 1000) and b1000. a Waveform. b Banana.
c Ringnorm. d Twonorm

sample size N is enough for the proposed MCMC sampling method to achieve a good
classification performance without applying the burn-in phase or subsequent thinning.

Figure 3 shows the mean and deviation of the sample probabilities of every instance
in four UCI data sets. For each instance, we show the mean and deviation of its sample
probabilities, which are produced by the models of all the states visited by MCS-
KSVMD. Suchmean and deviation of sample probabilities are experimental evidences
that support the two reasons for the fast convergence speed of MCS-KSVMD. We
illustrate this as follows.

For the first reason, we can observe in Fig. 3 that a large proportion of instances have
high sample probabilities; these instances are far from the decision boundaries, and
are fitted by most of the models of the visited states. At the tail of each curve, there are
some instances that have extremely low sample probabilities. Those instances are far
from the decision boundaries, however, do not fit most of the models of visited states.
Only a few instances have moderate sample probabilities; these are the instances that
are near the boundaries.

For the second reason, we can see in Fig. 3 that the deviations are small for the
instances with very large or small sample probabilities. This indicates that most of the
models of the visited states produce similar classification results and sample probabil-
ities for the instances that are far from the decision boundaries. We can also see that
the deviations are large for the instances with moderate sample probabilities. This is
because the classification results of most models are not stable for the instances that
are close to the decision boundaries.
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Fig. 3 Themean and standard deviation of the sample probability of every instance. The instances are sorted
by their means in descending order. To make the error bars of deviation less crowded for better viewing, we
show the deviations of 60 uniformly sampled instances. a Waveform. b Banana. c Ringnorm. d Twonorm

Interestingly, among all the data sets in Fig. 3, the Banana data set in Fig. 3b
contains the largest proportion of instances whose means are highly close to either 1.0
or 0.0. The deviations of these instances are nearly 0.0. This means most instances
are either sampled with a probability close to 1.0, or sampled with a probability close
to 0.0. In this case, bN converges very fast, which further leads to a fast convergence
of classification accuracy. Accordingly, as shown in Fig. 1, MCS-KSVMD converges
much faster on the Banana data set than on the data sets Waveform, Ringnorm and
Twonorm.

Figure 4 shows the effect of parameter α on the accuracy of MCS-KSVMD. On
most of the data sets, the accuracy of MCS-KSVMD first increases when α increases,
then drops when α approaches 1. This is because the correctly labeled instances that
are far from the decision boundary of model Mi are usually sampled with very high
probabilities, and the mislabeled instances that are far from the decision boundary
always carry a very low probability for sampling. Therefore, as shown in Fig. 5, the
c(k) value ofmost data instances are around 0 or 1, only a few data instances fall within
thewide gap between 0 and 1. Recall thatMCS-KSVMDfilters out all instanceswhose
c(k) is smaller than threshold α. When α = 0, no mislabeled instances are filtered out
and MCS-KSVMD degenerates to KSVM, which gives a low accuracy performance.
When α increases, moremislabeled instances will be filtered out, thus the performance
of MCS-KSVMD increases for a wide range of α. When α approaches 1, a large
proportion of correctly labeled instances are filtered out. In this case, MCS-KSVMD
may not have enough data to train a good classifier, thus the accuracy performance
drops.
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Fig. 4 The effect of parameter α on the accuracy of MCS-KSVMD. The parameters are set to ρρρ1, N = 200
and α = {0.0, 0.1, . . . , 1.0}

0 0.5 1
0

100

200

300

400

N
um

be
r o

f I
ns

ta
nc

es

(a)

0 0.5 1
0

500

1000

1500

2000

N
um

be
r o

f I
ns

ta
nc

es

(b)

(c) (d)

0 0.5 1
0

500

1000

1500

N
um

be
r o

f I
ns

ta
nc

es

0 0.5 1
0

200

400

600

800

N
um

be
r o

f I
ns

ta
nc

es

Fig. 5 The frequency distribution histograms of c(k) on the data sets of Waveform, Banana, Ringnorm and
Twonorm. a Waveform. b Banana. c Ringnorm. d Twonorm

4.3 Comparison on the UCI benchmark data sets

In this subsection, we analyze the performance in accuracy, ER1 and ER2 of all
compared methods on the UCI benchmark data sets.

Tables 3, 4 and Fig. 6 show the accuracy of all methods for the seven settings of
class-conditional noise ρρρ0 ∼ ρρρ6 and the four settings of adversarial noise γγγ 1 ∼ γγγ 4,
respectively. For the noise setting of ρρρ0, there is no label noise, and we can see that all
compared methods achieve comparable performance in accuracy. For the other noise
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Fig. 6 The comparison of accuracy performance between KLDA and MCS-based methods on the noise
settings of ρρρ1, ρρρ2, γγγ 1, γγγ 2, γγγ 3 and γγγ 4. The real numbers on top of each group of bars is the p values
obtained by performing a paired t test between the best MCS-based method and KLDA. a Breast cancer. b
Heart. c Diabetis. d German. e Splice. f Waveform. g Banana. h Ringnorm. i Twonorm

settings, such as ρρρ1 ∼ ρρρ6 in Table 3 and γγγ 1 ∼ γγγ 4 in Table 4, we can observe the
following results.

First, C-SVCF slightly improves the accuracy of KSVM by training a KSVM on
all label-corrupted instances, and removing the instances misclassified by the KSVM.
This demonstrates that KSVM trained on label-corrupted instances can provide some
useful information in identifying mislabeled instances. However, since the reliability
of single KSVM is inevitably affected by the mislabeled instances, the accuracy of
C-SVCF does not always outperform KSVM.

Second, the importance re-weighting methods IW� and eIW� achieve better accu-
racy than KSVM and C-SVCF. The improvement of accuracy is largely achieved by
applying density ratio estimation to estimate the label noise rate. However, as claimed
by Liu and Tao (2016), the classification performance of IW� and eIW� heavily relies
on the accuracy of density ratio estimation, and it is difficult to choose an appropriate
density estimation kernel to get accurate density ratio estimation in high dimensional
space.
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Third, as shown in Fig. 6, the MCS-based methods achieve a better accuracy than
KLDA on most of the benchmark data sets. This demonstrate the superior noise resis-
tance performance of the MCS-based methods over KLDA.

In summary, the proposed MCS-based methods MCS-KSVMD, MCS-KSVMF,
MCS-KSVMW achieve comparable performance in accuracy, and the best MCS-
based method outperforms the other compared methods on most of the data sets in
a statistically significant manner. The good performance is achieved by assembling
the probabilistic output of multiple KSVMs in a Markov chain to effectively identify
mislabeled instances. Although a single KSVMmay not be highly reliable, each of the
multiple KSVM models provides some useful information in identifying mislabeled
instances. The MCS framework comprehensively utilizes such information to achieve
outstanding noise-resisting classification performance.

We can also observe that the MCS-based methods perform worse than the impor-
tance re-weighting methods on some small data sets, such as Breast cancer and
Diabetis. This is because Mi overfits Si when a data set is small. In such a case,
the correctly labeled instances do not consistently support the sampling of each other,
which leads to limited performance in accuracy.

Tables 5 and 6 show the performance in ER1, ER2 and ER1+ER2 of the data filter-
ing methods C-SVCF and MCS-KSVMD for the seven settings of class-conditional
noise and the four settings of adversarial noise, respectively. Since IW�, eIW�, MCS-
KSVMF and MCS-KSVMW do not remove mislabeled instances, ER1 and ER2 are
not applicable evaluation metrics to them.

On most of the data sets, C-SVCF slightly outperforms MCS-KSVMD in ER1,
however, MCS-KSVMD significantly outperforms C-SVCF in ER2 and ER1+ER2.
These results indicate that, comparing with C-SVCF, MCS-KSVMD removes a little
bit more correctly labeled instances and, at the same time, much more mislabeled
instances.

To investigate why MCS-KSVMD removes some correctly labeled instances, we
locate the removed correctly labeled instances in the feature space. It turns out that
most of the correctly labeled instances removed are close to the decision boundary
of the model Mi of many states. This is because an instance close to the decision
boundary of Mi is sampled with a probability around 0.5. Recall that the threshold
to remove an instance is set to α = 0.5. It is likely that MCS-KSVMD removes some
correctly labeled instances that are close to the decision boundary ofMi .

More often than not, the classification performance of most conventional classifica-
tion models is more sensitive to existing mislabeled instances than missing correctly
labeled instances. Therefore, the improvement of classification performance achieved
by removing more mislabeled instances out weights the negative influence of remov-
ing a few correctly labeled instances. As a result, MCS-KSVMD achieves much better
classification performance than C-SVCF, which has been demonstrated by the perfor-
mance in accuracy in Table 3 and Table 4.
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Fig. 7 The time cost of all compared methods on the UCI benchmark data sets in noise setting ρρρ1. For
MCS-based methods, we use N = 200, α = 0.5. For the other methods, we use their default parameters. a
Breast cancer. b Heart. c Diabetis. d German. e Splice. f Waveform. g Banana. h Ringnorm. i Twonorm

4.4 Efficiency of Markov Chain Monte Carlo sampling

In this subsection, we compare the efficiency of all methods, and analyze the effect of
the sample size N on the time cost of the proposed MCMC method in Algorithm 1.

Figure 7 shows the time cost of all compared methods on each of the UCI bench-
mark data sets. eIW, KLDA, C-SVCF and KSVM are efficient due to their low time
complexity. The time cost of IW is much larger than eIW because the density ratio
estimation of IW is time consuming (Liu and Tao 2016). We can also observe that the
MCS-based methods achieve a comparable time cost with IW on the small data sets,
such as Breast cancer, Heart and Diabetis. On the large data sets, such as Waveform,
Banana, Ringnorm and Twonorm, the MCS-based methods even achieve a lower time
cost than IW.

To evaluate how the time cost of the MCMCmethod in Algorithm 1 changes when
the sample size N increases, we show in Fig. 8 the time cost of the MCMC sampling
method, denoted by tMCMC, as well as the time cost to train a single KSVM on Ŝ,
denoted by tKSVM. For each value of N , tMCMC and tKSVM are the total time cost
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Fig. 8 The time cost of KSVM
and the MCMC sampling
method in Algorithm 1. tMCMC
and tKSVM are the total time
cost of running MCMC and
KSVM, respectively, on all
benchmark data sets in the six
class-conditional noise settings
ρρρ1 ∼ ρρρ6
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of running MCMC and KSVM, respectively, on all benchmark data sets in the six
class-conditional noise settings ρρρ1 ∼ ρρρ6.

As it is shown in Fig. 7, tMCMC increases linearly with respect to N , and it is always
smaller than NtKSVM. This is because the time complexity of the MCMC sampling
method isO(NT ), where T is the average time cost to train a single modelMi on Ŝi .
Since |Ŝi | ≤ |Ŝ|, it follows that T ≤ tKSVM. Therefore, NT ≤ NtKSVM.

In sum, since a small sample size N is enough for the MCS-based methods to
achieve good classification performance, the proposed MCS framework is efficient.

4.5 Case study on synthetic data

In this section, we present a case study on a synthetic data set to show the identified
mislabeled instances and the decision boundary of the MCS-based model. We do not
use MCS-KSVM, since it does not provide an explicit decision boundary. Instead, we
use the MCS-LR model, which employs Logistic Regression (LR) (Hosmer Jr et al.
2013) to train Mi and the final model M∗ for the MCS framework. The discarding
method is employed byMCS-LR. For comparison, we use LR as the baseline method.

We generate a clean synthetic data set by sampling 200 instances from the mixture
of two 2-dimensional multivariate normal distributions in a standard 2-dimensional
Cartesian coordinate system. Themean vectors of themultivariate normal distributions
are [5, 3]� and [3, 5]�, respectively. The covariance matrices are the same, which is a
2-by-2 diagonal matrix whose diagonal elements are set to 0.4. The data set consists of
100 positive instances and 100 negative instances. Each class of instances is generated
by one of the multivariate normal distributions. The feature of each instance is a 2-
dimensional vector denoted by [x1, x2]� ∈ R2. To generate a corrupted synthetic data
set, we randomly flip the label of each instance, whose second feature x2 is larger than
3 and smaller than 5, with a probability of 0.5.

Figure 9a shows the distribution of the clean synthetic data set. Figure 9b shows
the performance of MCS-LR in identifying the mislabeled instances in the corrupted
synthetic data set. For all mislabeled instances, those that are correctly identified by
MCS-LR are marked by circles, and those that are missed by MCS-LR are marked
by squares. No correctly labeled instance is identified as mislabeled instance. Most of
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Fig. 9 A case study of LR and
MCS-LR on the synthetic data
set. A false noise is a correctly
labeled instance that is identified
as a mislabeled instance by
MCS-LR. a The clean synthetic
data set. b The noise
identification performance. c
The performance of MCS-LR
and LR
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the mislabeled instances are correctly identified by MCS-LR. This demonstrates the
outstanding performance of MCS-LR in identifying mislabeled instances.

Figure 9c draws the decision boundaries of MCS-LR and LR, which are trained on
the corrupted synthetic data set. The ‘Boundary (GT)’ is the ground truth boundary that
is obtainedby trainingLRon the clean synthetic data set.Due to the effect ofmislabeled
instances, “Boundary (LR)” significantly deviates from “Boundary (GT)”. However,
“Boundary (MCS-LR)” is very close to “Boundary (GT)”, which demonstrates the
superior noise-resisting performance of MCS-LR.

In summary, the proposed MCS framework achieves impressive performance in
identifying mislabeled instances and training noise-resisting classifiers.

5 Conclusions

In this paper, we tackle the challenging problem of classification with label noise. We
propose a novel MCS framework that embeds a conventional classification model into
a carefully designedMarkov chain to accurately identifymislabeled instances and train
noise-resisting classifiers. TheMCS framework smoothly works with a wide spectrum
of conventional binary classification models, and achieves outstanding noise-resisting
binary classification performance.

For future work, we will generalize the MCS framework to tackle the more chal-
lenging problem of multi-class classification in the presence of both label noise and
feature noise.
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