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ABSTRACT
One big challenge to federated learning is the non-IID data distri-
bution caused by imbalanced classes. Existing federated learning
approaches tend to bias towards classes containing a larger number
of samples during local updates, which causes unwanted drift in
the local classifiers. To address this issue, we propose a classifier
debiased federated learning framework named FedCD for non-IID
data. We introduce a novel hierarchical prototype contrastive learn-
ing strategy to learn fine-grained prototypes for each class. The
prototypes characterize the sample distribution within each class,
which helps align the features learned in the representation layer of
every client’s local model. At the representation layer, we use fine-
grained prototypes to rebalance the class distribution on each client
and rectify the classification layer of each local model. To alleviate
the bias of the classification layer of the local models, we incorpo-
rate a global information distillation method to enable the local
classifier to learn decoupled global classification information. We
also adaptively aggregate the class-level classifiers based on their
quality to reduce the impact of unreliable classes in each aggregated
classifier. This mitigates the impact of client-side classifier bias on
the global classifier. Comprehensive experiments conducted on var-
ious datasets show that our method, FedCD, effectively corrects
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classifier bias and outperforms state-of-the-art federated learning
methods.

CCS CONCEPTS
• Security and privacy→ Domain-specific security and pri-
vacy architectures; • Computing methodologies→ Machine
learning algorithms.

KEYWORDS
federated learning, prototype learning, knowledge distillation

ACM Reference Format:
Yunfei Long, Zhe Xue, Lingyang Chu, Tianlong Zhang, Junjiang Wu, Yu
Zang, and Junping Du. 2023. FedCD: A Classifier Debiased Federated Learn-
ing Framework for Non-IID Data. In Proceedings of the 31st ACM Interna-
tional Conference on Multimedia (MM ’23), October 29-November 3, 2023,
Ottawa, ON, Canada. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3581783.3611966

1 INTRODUCTION
Real-world data is usually distributed across multiple clients, such
as mobile devices, hospitals and institutions. Due to privacy and
data protection concerns [41], data on each client can only be ac-
cessed locally. Instead of traditional centralized learning methods,
federated learning (FL) [6, 30, 33, 44, 45] has been proposed to ad-
dress the data silos problem and protect users’ data privacy without
information leakage. The FL process consists of local training on
clients and global model aggregation on the server. It has been
successfully applied in numerous real-world applications, including
the Internet of Things [13, 38], health care [11, 12] and multimedia
analysis [16, 27, 32]

Traditional federated learning methods, such as FedAvg [33],
have demonstrated significant success in scenarios where data is in-
dependent and identically distributed (IID). However, in real-world
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scenarios, data samples across different clients often exhibit non-
IID characteristics. One of the key challenges in non-IID federated
learning is the presence of class imbalance. The existence of imbal-
anced data can cause FedAvg to favor classes with a larger number
of samples during local updates, leading to client drift. Moreover,
research has shown that the classification layer in local deep models
introduces more bias than the hidden layers in non-IID federated
learning [31], which significantly deviates from the global optimum
in terms of local optimization goals. As a result, the performance of
FedAvg deteriorates considerably under these circumstances. This
issue is also an urgent problem to be addressed in non-IID federated
learning.

Many federated learning approaches have been proposed to
solve non-IID federated learning. Classic methods include Fedprox
[29], Scaffold [23], FedDC [15], Lumos [36] and FedIR [21], which
propose local optimization constraints to align local and global
optimization goals. Other methods include FedNova [43], FedMA
[42] , FedAvgM [20] and CCVR [31] to make the global model close
to the global optimum by improving the global aggregation stage.
Nevertheless, despite the advancements made by these methods,
they still fall short in addressing the challenge of classifier bias that
arises with imbalanced classes. In the following analysis, we will
discuss the limitations of these methods to elucidate the underlying
causes of this issue.

First, the primary factor contributing to this issue is the inability
of clients to access the distribution information of global sample
features during local updates, as Figure 1(a). As a result, the learned
feature representations may lack highly separable characteristics.
Second, during the local update process, the progressive loss of
global classification information leads to a bias of the local classifier
towards the local optimum. Third, during the global aggregation
stage, the varying importance of knowledge learned by the same
client for different classes is not considered, which may further
cause low-quality classes in the client to negatively affect the ag-
gregation process of the global model.

To address the aforementioned challenges, we propose FedCD, a
framework that includes hierarchical prototype contrastive learn-
ing, global information distillation, and adaptive class-level clas-
sifier aggregation. To overcome the first limitation, we propose
hierarchical prototype contrastive learning to learn fine-grained
prototypes for each class, improving the characterization of their
sample distribution and enhancing the hierarchical separability be-
tween fine-grained classes. By rebalancing the sample distribution
using the fine-grained prototypes, clients gain access to global sam-
ple distribution information, as shown in Figure 1(b). To enhance
feature separability within each batch, we introduce batch proto-
type regularization loss, which makes the learned representations
fit into the input space of the global classifier. For the second limita-
tion, we introduce global information distillation, which decouples
the soft labels output by the global classifier. This approach can
align the local classifier and the global classifier at the decision
level, and alleviate the problem of local classifiers’ bias towards a
large number of classes in the client. To address the third limita-
tion, we propose adaptive class-level classifier aggregation, which
involves partitioning classifiers into fine-grained class-vectors and
adaptively evaluating their quality. Higher weights are assigned
to high-quality class-vectors, while lower weights are assigned to
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Figure 1: Comparison between FedAvg and FedCD. By learn-
ing the fine-grained global prototypes, FedCD can debias the
classifier drift on client.

unreliable class-vectors. This approach effectively mitigates the
influence of unreliable class-vectors from clients on the global clas-
sifier. We conduct extensive experiments on several datasets, and
the experimental results showcase the advantages of our method
compared to other approaches. The main contributions of this paper
can be summarized as follows:

• We propose hierarchical prototype contrastive learning loss
and batch prototype regularization loss to learn fine-grained
prototypes that accurately characterize the global sample
distribution and encourage feature representations within
classes to aggregate while remaining distant from other
classes. Compared with single prototype methods, the pro-
posed fine-grained prototypes rebalance the feature distri-
bution of samples on clients more accurately, effectively
reducing the bias of local classifiers.
• We propose a global information distillation loss to align
local and global classifiers at the decision level, mitigating
the bias of local classifiers towards a large number of classes
on the client side. By decoupling the soft labels output by the
global classifier, local classifiers can be debiased by global
classification information that clients cannot access.
• We introduce an adaptive class-level classifier aggregation
method that partitions classifiers into fine-grained class-
vectors. By adaptively assigning weights to these vectors,
we effectively mitigate the impact of unreliable class-vectors
on the global classifier and further enhance the robustness
of the aggregated global classifier.

2 RELATEDWORK
Limited by non-IID data in the real world, federated learning [33]
does not perform as well as expected. Extensive approaches are
working on exploring non-IID federated learning solutions in client
selection [3, 14, 40], aggregation scheme [4, 9, 10] and personalized
federated learning [2, 8, 22, 28]. Then, we focus on the techniques
that most correlate with our work

Client Drift Alleviation. Some vanilla federated learning al-
gorithms alleviate client drift by modifying the local optimization
objectives, e.g., Fedprox [29] directly uses the ℓ2-norm distance to
mitigate client drift, Scaffold [23] uses variance reduction to cor-
rect client drift, FedDC [15] uses the learned local drift variables
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to bridge the gap, i.e., perform consistency constraints at the pa-
rameter level. FedDyn [1] dynamically optimizes local objectives
iteratively to achieve asymptotic consistency between local optima
and stationary points of the global objective, FedMA [42] matches
and averages weights to build a shared global model in a layer-wise
manner, CCVR [31] samples pseudo-samples on the server and
calibrates classifiers to address classifier drift.

Contrastive Learning in Federated Learning. Contrastive
learning [5, 18] has already shown excellent prospects in unsu-
pervised representation learning. FedX [17] combines contrastive
learning with federated learning and uses global and local distilla-
tion methods to learn the vector representation of samples without
supervision. In supervised areas, MOON [26] firstly applies con-
trastive learning at the model level to make the local model learn
a representation that is closer to the global model and better than
the local models of the previous round.

In recent years, prototype learning has been widely developed,
where class prototypes are represented as the average feature vector
of the class [34]. FedProto [39] suggests minimizing communication
overhead by exchanging prototypes rather than gradients or model
parameters between the client and server, FedProc [35] introduces
the utilization of global prototypes on the server as a reference
for refining client training during local updates. It employs a con-
trastive loss to encourage intra-class features to be closer while
inter-class features to be farther apart.

3 METHODOLOGY
3.1 Overall Framework
The framework of the proposed method FedCD is shown in Figure
2. We introduce each module in detail. 1) Fine-Grained Proto-
type Learning aligns the sample representation on each client
and optimizes each fine-grained local prototype to accurately re-
flect the global sample distribution by Lℎ𝑝𝑐 . It also constrains the
batch prototype to fit into the input place of the global classifier
by L𝑏𝑝𝑟 ; 2) Global Information Distillation empowers the local
classifier to assimilate global classification information, by lever-
aging L𝑔𝑖𝑑 , thereby establishing alignment between the local and
global classifiers. Furthermore, it enables the adjustment of a biased
local classifier based on the fine-grained global prototype using
L𝑑𝑐𝑙 ; 3) Fine-Grained Global Prototype Aggregation aggre-
gates the fine-grained local prototypes of each fine-grained class
into a fine-grained global prototype using the sample proportion
of local clients as weights; 4) Adaptive Class-Level Classifier
Aggregation utilizes fine-grained global prototypes to adaptively
assess the quality of class vectors on the client level, thereby en-
hancing the robustness of the global classifier. This is achieved by
emphasizing high-quality class vectors and reducing the weight
of low-quality ones during the aggregation. 5) Feature Extractor
Aggregation takes the same approach as Fedavg [33] to aggregate
local feature extractors from all clients to obtain the global feature
extractor.

3.2 Fine-Grained Global Prototype Aggregation
In this study, all samples belong to 𝐶 ground-truth classes. Each
class is further partitioned into𝑀 fine-grained classes, with each
fine-grained class contains a fine-grained prototype P𝑐,𝑚 , where
𝑐 ∈ [1,𝐶], 𝑚 ∈ [1, 𝑀]. During the global aggregation stage, our

objective is to characterize the global data distribution information
by aggregating fine-grained global prototypes P𝑔 for each class. To
accomplish this, we adopt a weighted aggregation method on the
server, aggregating the fine-grained local prototypes from various
clients. The weight assigned for aggregation is determined by the
ratio of the number of samples in the class to the total number of
samples in that class across all clients. Each fine-grained local pro-
totype is obtained by optimizing through gradient descent during
the local update phase.

After the server receives all fine-grained local prototypes belong-
ing to the𝑚-th fine-grained class under the 𝑐-th ground-truth class,
the fine-grained global prototype P𝑔𝑐,𝑚 is obtained as:

P𝑔𝑐,𝑚 =

𝐾∑︁
𝑘=1

𝑛𝑘𝑐,𝑚

𝑛𝑐,𝑚
P𝑘𝑐,𝑚, (1)

where P𝑘𝑐,𝑚 is the fine-grained local prototype from client 𝑘 . 𝑛𝑘𝑐,𝑚
and 𝑛𝑐,𝑚 represent the number of samples for the corresponding
fine-grained class on the 𝑘-th client and the total number of samples
for that class across all clients, respectively.

3.3 Fine-Grained Prototype Learning
This paper aims to address the issue of class imbalance in non-IID
federated learning. The presence of class imbalance often leads
to insufficient samples for minority classes. Such imbalance poses
challenges in accurately characterizing the true data distribution
and hinders the effective extraction of relevant information during
local model training. Furthermore, in the presence of class imbal-
ance, local classifiers tend to exhibit bias towards the majority class,
resulting in a decline in the overall performance of the global model.
In real data distributions, samples of the same class cannot be com-
pactly clustered in a cluster, resulting in the learning of a single
prototype being insufficient to effectively describe the sample dis-
tribution of each class.[25, 37, 48]. To overcome these challenges,
we propose a novel approach that involves learning fine-grained
prototypes for each class. These fine-grained prototypes accurately
capture the sample distribution for each class on clients and are
used to mitigate the bias of the local classifier.

Fine-Grained Class Assignment. After receiving the fine-
grained global prototypes P𝑔 from the server, we proceed with
assigning samples to fine-grained classes on the client. For 𝑖-th
sample 𝑥𝑘

𝑖,𝑐
from class 𝑐 on the 𝑘-th client, its feature is expressed as

𝑧𝑘
𝑖,𝑐

= 𝑓𝑒 (𝑥𝑘𝑖,𝑐 |𝜃𝑘 ), and its fine-grained class is obtained as follows:

𝑠𝑘𝑚 = 𝑠𝑖𝑚(𝑧𝑘𝑖,𝑐 , P
𝑔
𝑐,𝑚),

S𝑘𝑖 = [𝑠𝑘1 , . . . , 𝑠
𝑘
𝑚, . . . , 𝑠

𝑘
𝑀 ],

𝑡 = argmax
𝑚
(S𝑘𝑖 ),

(2)

where 𝑠𝑖𝑚(·, ·) is the similarity function, and in this work, we use
the cosine similarity function. 𝑠𝑘𝑚 is the similarity of 𝑧𝑘

𝑖,𝑐
to the𝑚-th

fine-grained global prototype of the 𝑐-th class. 𝑓𝑒 (·|𝜃𝑘 ) represents
the feature extractor with its parameter. Finally, 𝑡 is the assigned
class label that results in the maximum value for S𝑘

𝑖
, and the feature

of the assigned sample is further denoted by 𝑧𝑘
𝑖,𝑐,𝑡

.
Hierarchical Prototype Contrastive Learning. In contrast

to existing methods using the average of samples from a class as
prototypes, our method initializes fine-grained local prototypes
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Figure 2: The framework of the proposed method FedCD. Solid arrows represent the forward propagation process, while dashed
arrows indicate the direction of backpropagation process.
with fine-grained global prototypes (In the first round, we initialize
the local prototype using the k-means) and treats them as learnable
variables, optimized through gradient descent. Specifically, given a
sample feature 𝑧𝑘

𝑖,𝑐,𝑡
, it should be closest to the local prototype of

the fine-grained class it belongs to (Pkc,t), while maintaining an ap-
propriate distance from other fine-grained local prototypes within
the same class (P𝑘𝑐,𝑚,𝑚 ≠ 𝑡 ), and exhibiting significant separation
from local prototypes of different classes (P𝑗,𝑚, 𝑗 ≠ 𝑐). To achieve
this, we propose a novel hierarchical prototype contrastive learning,
constructing a positive pairΨ𝑝𝑜𝑠 ,𝑀−1 pseudo negative pairsΨ𝑝𝑛𝑒𝑔 ,
and (𝐶 −1) ×𝑀 negative pairs Ψ𝑛𝑒𝑔 to align sample representations
and facilitate the learning of accurate fine-grained prototypes that
capture the sample distribution. The loss is defined as follows:

Ψ𝑝𝑜𝑠 = 𝜓 (𝑧𝑘𝑖,𝑐,𝑡 , P
k
c,t),

Ψ𝑝𝑛𝑒𝑔 =
∑︁
𝑚≠𝑡

𝜓 (𝑧𝑘𝑖,𝑐,𝑡 , P
𝑘
𝑐,𝑚),

Ψ𝑛𝑒𝑔 =
∑︁
𝑗≠𝑐

∑︁
𝑚

𝜓 (𝑧𝑘𝑖,𝑐,𝑡 , P
𝑘
𝑗,𝑚),

(3)

where𝜓 (𝑧, P) = 𝑒𝑠𝑖𝑚 (𝑧,P)/𝜏 , 𝜏 is the temperature parameter. We in-
troduce a parameter 𝛼 to adjust the hierarchical distance of features
to two types of negative pairs. The loss of hierarchical prototype
contrastive learning is defined as follows:

𝜔 (𝑧𝑘𝑖,𝑐,𝑡 ) =
Ψ𝑝𝑜𝑠

Ψ𝑝𝑜𝑠 + 𝛼Ψ𝑝𝑛𝑒𝑔 + (1 − 𝛼)Ψ𝑛𝑒𝑔
, (4)

Lℎ𝑝𝑐 = −
1
𝑁

∑︁
𝑧𝑘
𝑖,𝑐,𝑡
∈D𝑘+

I𝑐,𝑡 𝑙𝑜𝑔𝜔 (𝑧𝑘𝑖,𝑐,𝑡 ), (5)

where D𝑘+ = {D𝑘 ∪ P𝑔} is the rebalanced local dataset. D𝑘 is the
local sample features set and P𝑔 is the set of fine-grained global
prototypes. The importance factor I𝑐,𝑡 represents the significance
of each sample. Local samples are assigned a value of 1 for I𝑐,𝑡 .

For the fine-grained global prototype P𝑔𝑐,𝑡 , I𝑐,𝑡 is equal to 𝑛𝑐,𝑡 . 𝑁 =∑𝐶
𝑐=1

∑𝑀
𝑚=1 I𝑐,𝑡 is the sum of importance factors. We set 𝛼 < 0.5 to

indicate that the feature is farther from the real negative samples
compared to the pseudo negative samples.

Batch Prototype Regularization. Enhancing the separability
of feature representations is of paramount importance for classifier
correction. In light of this, we introduce a batch prototype regular-
ization to effectively align features with the input space of a global
classifier. By incorporating this regularization loss, we aim to bol-
ster the separability of feature representations, thereby enhancing
the overall discriminative power:

𝑑𝑖 = 𝜎 (𝐷 (P𝑏𝑐 |𝜙) ·𝑊 ), 1 ≤ 𝑖 ≤ 𝑁𝑏 , 𝑐 ∈ Y𝑏 , (6)

where𝐷 is the global classifier and𝜙 is its parameters.𝑊 ∈ R(𝐶×𝑀 )×𝐶
is an aggregation matrix employed to consolidate the classification
results output by the fine-grained classifier. 𝜎 (·) is the softmax
function. P𝑏𝑐 is the batch prototype (batch feature mean) of class
𝑐 and 𝑁𝑏 is the number of P𝑏𝑐 in the batch. Y𝑏 is the label set of
samples in the batch. Note that the set of P𝑏𝑐 and Y𝑏 are different
in different batches. The loss of batch prototype regularization is
formulated as follows:

L𝑏𝑝𝑟 = −
1
𝑁𝑏

𝑁𝑏∑︁
𝑖=1

𝑙𝑜𝑔(𝑑𝑐𝑖 ), (7)

where 𝑑𝑐
𝑖
is the 𝑐-th element of 𝑑𝑖 and 𝑐 denotes the ground-truth

class of the 𝑖-th batch prototype.

3.4 Global Information Distillation
During local updates, we aim to leverage the global model to trans-
fer its knowledge to the local model, ensuring consistency between
local and global models. Classifier output contains two compo-
nents: target class information and non-target class information.
Conventional knowledge distillation methods tend to overlook the
significance of non-target class information, which is crucial for
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effective distillation. Acknowledging the importance of non-target
class information is particularly vital in federated scenarios with
limited client data access. The global classification information
within non-target classes is pivotal in mitigating classifier bias. In-
spired by decoupled knowledge distillation (DKD) [47], which sepa-
rates traditional knowledge distillation into Target Class Knowledge
Distillation (TCKD) and Non-Target Class Knowledge Distillation
(NCKD), we employ decoupled knowledge distillation to mitigate
the occurrence of classifier drift resulting from class imbalance.
This is achieved by enabling the local model to acquire a richer
understanding of global information through NCKD. The loss of
DKD is formulated as:

𝐷𝐾𝐷 (𝑝T | |𝑝S) = 𝑇𝐶𝐾𝐷 + 𝜉𝑁𝐶𝐾𝐷

= 𝐾𝐿(𝑏T | |𝑏S) + 𝜉𝐾𝐿(𝑝T | |𝑝S),
(8)

where T and S denote teacher and student respectively. 𝜉 is a pa-
rameter that balances the importance of TCKD and NCKD. When
𝜉 is larger, NCKD will have greater impact, and the clients will
learn more knowledge that they cannot access. When a sample
belonging to class 𝑐 is input, the probability output by the teacher
model can be denoted as 𝑝T ∈ R1×𝐶 , and the probability output
by the student model can be denoted as 𝑝S . 𝑏 = [𝑝𝑐 , 1 − 𝑝𝑐 ] de-
notes the binary probability of the target class 𝑝𝑐 and all other
non-target classes (1 − 𝑝𝑐 ); 𝑏T and 𝑏S represent the teacher’s
and student’s binary probability, respectively. We propose 𝑝 =

[𝑝1, . . . , 𝑝𝑐−1, 𝑝𝑐+1, . . . , 𝑝𝐶 ] ∈ R1×(𝐶−1) to construct probabilities
of non-target classes, where 𝑝T and 𝑝S denote teacher’s and stu-
dent’s probabilities among non-target classes, respectively. The loss
of global information distillation is defined as follows:

L𝑔𝑖𝑑 =
1
𝑁

∑︁
𝑧𝑘
𝑖,𝑐,𝑡
∈D𝑘+

I𝑐,𝑡𝐷𝐾𝐷 (𝑝𝑔𝑖,𝑐,𝑡 | |𝑝
𝑙
𝑖,𝑐,𝑡 ), (9)

where 𝑝𝑔
𝑖,𝑐,𝑡

= 𝐷 (𝑧𝑘
𝑖,𝑐,𝑡
|𝜙) ·𝑊 and 𝑝𝑙

𝑖,𝑐,𝑡
= 𝐷 (𝑧𝑘

𝑖,𝑐,𝑡
|𝜙𝑘 ) ·𝑊 represent

the predicted probabilities output by the global model and the local
model, respectively.

3.5 Debiased Classifier Learning
In order to tackle the problem of classifier shift on class-imbalanced
clients, we present a debiased classifier learning loss L𝑑𝑐𝑙 . Our
method involves leveraging fine-grained global prototypes to rebal-
ance the distribution of client samples. By utilizing these prototypes,
we can effectively make use of global distribution information to
reduce bias in the classifier. The loss is defined as follows:

L𝑑𝑐𝑙 =
1
𝑁

∑︁
𝑧𝑘
𝑖,𝑐,𝑡
∈D𝑘+

I𝑐,𝑡L𝐶𝐸 (𝐷 (𝑧𝑘𝑖,𝑐,𝑡 |𝜙𝑘 ) ·𝑊,𝑐), (10)

where L𝐶𝐸 denotes the cross-entropy loss. 𝜙𝑘 is the parameters of
the 𝑘-th local classifier. 𝑐 is the ground-truth label of 𝑧𝑘

𝑖,𝑐,𝑡
.

Finally, integrating the objectives above, the complete loss func-
tion of FedCD for client optimization is formulated as follows:

L𝑡𝑜𝑡𝑎𝑙 = 𝜇L𝑑𝑐𝑙 + (1 − 𝜇)Lℎ𝑝𝑐 + 𝛾L𝑏𝑝𝑟 + 𝜆L𝑔𝑖𝑑 , (11)

where 𝜇 = 1− 𝑡
𝑇
. 𝑡 is the current communication round, and𝑇 is the

total communication round. During the early training phase, when
the model’s feature extraction capability is limited, the usage of 𝜇
prevents the prototypes from being influenced by inferior features.

Algorithm 1 Local update in FedCD
Input: local epochs E, batch size B,hyperparameter 𝜆, 𝛾 , 𝛼 ,𝑀 , the
datasets of 𝑘-th client D𝑘 , the fine-grained global prototypes
{P𝑔} → {P𝑘 }, the parameter of global model𝑤𝑡 → 𝑤𝑡

𝑘
, current

communication round t
1: for epoch 𝑒 = 1, 2, . . . , 𝐸 do
2: for each batch 𝑏 = {𝑧,𝑦} of D+

𝑘
do

3: Calculate Lℎ𝑝𝑐 in Eq.(5),
4: Calculate L𝑏𝑝𝑟 in Eq.(7),
5: Calculate L𝑔𝑖𝑑 in Eq.(9),
6: Calculate L𝑑𝑐𝑙 in Eq.(10),
7: Update the local model by optimizing L𝑡𝑜𝑡𝑎𝑙 in Eq.(11),
8: end for
9: end for
10: return𝑤𝑡+1

𝑘
, {Pk} to Server

Algorithm 2 Server aggregation in FedCD

Input: client number K, fine-grained local prototypes {P𝑘 },
parameters of local models {𝑤𝑡

𝑘
}, total communication round T

1: for each round 𝑡 = 1, 2, . . . ,𝑇 do
2: for each client 𝑖 = 1, 2, . . . , 𝐾 in parallel do
3: 𝑤𝑡+1

𝑘
, {P𝑘 } ← LocalUpdate(𝑘,𝑤𝑡 , {P𝑔}),

4: end for
5: Calculate {P𝑔} in Eq.(1),
6: Aggregate 𝜃𝑡+1 as FedAvg,
7: Aggregate 𝜙𝑡+1 in Eq.(12) - Eq.(15),
8: Send𝑤𝑡+1 = (𝜃𝑡+1;𝜙𝑡+1) and {P𝑔} to clients,
9: end for
10: return𝑤𝑇

In the later stages of training, 𝜇 is employed to prevent model
overfitting. 𝛾 and 𝜆 are hyperparameters to adjust the weight of
different losses.

3.6 Adaptive Class-Level Classifier Aggregation
In non-IID federated learning, class imbalance on clients leads to
varying performance across different classes. Consequently, the
importance of different classifiers on a single client differs during
the aggregation stage of the global classifier. We propose adaptive
class-level classifier aggregation, which mitigates the adverse ef-
fects of low-quality classes on the global classifier. Our approach
effectively addresses classifier bias by recognizing the varying sig-
nificance of classes within clients, rather than assigning a uniform
weight to each client. Specifically, the parameter of the classifier 𝜙
can be divided into 𝐶 ×𝑀 class-vectors.

𝜙 = [𝜑1, . . . , 𝜑 𝑗 , . . . , 𝜑𝐶×𝑀 ], (12)

where the parameters of classifier is 𝜙 ∈ R𝑑×(𝐶×𝑀 ) and each class-
vector is 𝜑 ∈ R𝑑×1. 𝑑 is the dimension of feature representation,
and 𝐶 ×𝑀 is the number of fine-grained classes.

We employ the classification outcomes of fine-grained global
prototypes, output by the client classifiers, to assess the importance
of a particular class among the clients. The expression below illus-
trates the classification results for fine-grained global prototype of
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the 𝑗-th class, generated by the classifier 𝐷𝑘 from the 𝑘-th client:

p̃𝑗
𝑘
= 𝜎 (𝐷𝑘 (P

𝑔

𝑗
|𝜙𝑘 )), 1 ≤ 𝑘 ≤ 𝐾, (13)

where p̃𝑗
𝑘
∈ R1×(𝐶×𝑀 ) is the classification result, 𝜙𝑘 is the param-

eter of 𝐷𝑘 received by the server. Here, 𝑗 ∈ [1,𝐶 ×𝑀] represents
the fine-grained class.

Then, we obtain the weights of the 𝑗-th class-vector for all clients
as follows:

𝜈 𝑗 = 𝜎 ( [p̃𝑗1 [ 𝑗], . . . , p̃
𝑗

𝑘
[ 𝑗], . . . , p̃𝑗

𝐾
[ 𝑗]]), (14)

where p̃𝑗
𝑘
[ 𝑗] is the 𝑗-th dimension of p̃𝑗

𝑘
, which indicates the im-

portance of the 𝑘-th client on the 𝑗-th class. 𝜈 𝑗 ∈ R𝐾 contains the
weight of the 𝑗-th class vector for each client.

Finally, to obtain an unbiased and reliable global classifier, we
perform adaptive class-level global classifier aggregation based on
the weight of each client’s class-vector as follows:

𝜑 𝑗 =

𝐾∑︁
𝑘=1

𝜈 𝑗 [𝑘] · 𝜑 𝑗
𝑘
. (15)

The entire training processes of FedCD on the client and server
is presented in Algorithm 1 and Algorithm 2, respectively.

3.7 Discussion on Privacy Protection
A prototype can be considered a low-dimensional representation
compared to the original sample. Unlike the original data, the proto-
type vector contains relatively less information, thus reducing the
risk of privacy leakage [35, 39]. The prototype in FedCD is acquired
by using gradient descent on the low-dimensional representation
of samples belonging to the same class. As a result, our prototype
is not merely a linear combination of sample features. This indi-
cates that the process of generating the prototype is irreversible,
preventing an attacker from reconstructing the original data based
solely on the prototype, unless they have access to the local model.
Moreover, FedCD can be effectively combined with other privacy
enhancement techniques to further improve the level of privacy
protection in the field of federated learning.

4 EXPERIMENTS
4.1 Experimental Settings
Compared methods.We adopt several representative federated
learning methods such as FedAvg [33], FedProx [29], Scaffold [23],
MOON [26], FedDyn [1], FedDC [15] and FedProc [35] as the com-
parison methods. To be fair, all these methods adopt the same
network architecture and settings.
Datasets. Both CIFAR10 and CIFAR100 datasets [24] have 50,000
training images and 10,000 testing images, the number of classes
are 10 and 100 respectively. EMNIST dataset [7] contains 124,800
training images and 20,800 testing images with 26 classes. To obtain
non-IID data distribution on clients, we follow the same settings
as [26, 46] to partition data by the Dirichlet distribution Dir(𝛽). In
the experiments, we set 𝛽 to 0.5 and 5, where smaller 𝛽 indicates
greater class imbalance.
Network Architecture. For CIFAR10 and EMNIST, we use two
convolutional layers followed by maxpooling and two fully con-
nected layers with ReLU activation as the base feature extractor. For

CIFAR100, Resnet50 [19] is adopted as the base feature extractor.
For all datasets, two fully connected layers are used as the projec-
tion, one fully connected layer as the classifier. Slightly different
from other methods, our method partitions the classifier into a fine-
grained classifier and an aggregation matrix𝑊 . This partitioning
enables the acquisition and aggregation of fine-grained classifi-
cation results. The feature extractor consists of the base feature
extractor and the projection head. The dimension of the output of
the feature extractor 𝑧 is set to 256.
Hyperparameters.We use the SGD optimizer with a learning rate
of 0.01, momentum set to 0.9 and weight decay set to 10−5. The
default number of local epochs 𝐸 = 10, the communication round
𝑇 = 100, client number 𝐾 = 10 with the participating rate 𝜂 = 1,
and the batch size 𝐵 = 64. During local updating, {𝛼, 𝜏, 𝑀} is set
to {0.1, 1, 3} for all datasets, 𝜉 is set to 0.5 for CIFAR10 and 8 for
CIFAR100 and EMNIST. {𝜆,𝛾} in Eq.11 are set to {0.1, 0.1} for all
datasets.

4.2 Performance Comparison
Accuracy Comparison. All methods are tested on three bench-
mark datasets with varying degrees of class unbalance 𝛽 ∈ {0.5, 5}
and 𝑖𝑖𝑑 . The results in Table 1 demonstrate that FedCD effectively
mitigates classifier bias caused by class imbalance and outperforms
other methods. Specifically, FedCD achieves at least 3.17%, 4.12%,
and 3.96% improvements over all baseline methods for 𝛽 ∈ {0.5, 5}
and 𝑖𝑖𝑑 on the CIFAR100 dataset. FedProc incorporates prototype
learning to enhance client representation learning and demon-
strates promising results in various scenarios, affirming the efficacy
of prototype learning in federated learning. However, a single proto-
type cannot precisely capture the distribution information of each
class, resulting in inferior performance of FedProc compared to
FedCD in all instances, validating the effectiveness of the proposed
method FedCD.
Communication cost Comparison. Table 2 evaluates the commu-
nication cost required for all themethods on CIFAR10 and CIFAR100
(𝛽 = 0.5) to achieve the same accuracy as FedAvg with 100 rounds
(66.31% for CIFAR10 and 64.50% for CIFAR100). Param represents
the parameters transmitted during each round of communication.
We calculate multiples of communication rounds and total param-
eters for all methods relative to FedCD. FedCD achieves the best
results on both CIFAR10 and CIFAR100. The total parameters are
calculated as the product of the transmitted parameters per round
and the number of communication rounds needed to achieve the
desired accuracy. We report the number of parameters transmit-
ted by FedCD and FedProc in the form of model parameters plus
prototype parameters. The findings indicate that the number of
parameters required for transmitting prototypes is significantly
smaller compared to model parameters. Additionally, FedCD’s to-
tal parameters required to achieve the desired accuracy are lower
than those of all other methods. Notably, the less optimal approach
(FedProc) on CIFAR10 requires 1.5 times more rounds and 1.3 times
more total parameters than FedCD, respectively.

4.3 Performance Analysis in Different Settings
To further illustrate the superiority of the proposed FedCD, we
conduct experiments from the following aspects to verify the per-
formance of FedCD:
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Table 1: Test accuracy (%) of different FL methods on CIFAR10, CIFAR100 and EMNIST.

Method FedAvg FedProx Scaffold MOON FedDyn FedDC FedProc FedCD

CIFAR10 𝑖𝑖𝑑 73.39 ± 0.12 73.56 ± 0.05 73.89 ± 0.08 72.70 ± 0.22 73.56 ± 0.29 72.64 ± 0.10 73.77 ± 0.14 75.56 ± 0.12
𝛽 = 5 72.99 ± 0.03 72.81 ± 0.26 72.87 ± 0.12 72.83 ± 0.13 73.04 ± 0.10 72.33 ± 0.28 72.87 ± 0.33 75.10 ± 0.06
𝛽 = 0.5 66.31 ± 0.59 67.53 ± 0.60 71.37 ± 0.25 68.55 ± 0.54 70.68 ± 0.36 69.17 ± 0.08 70.07 ± 0.36 73.10 ± 0.22

CIFAR100 𝑖𝑖𝑑 65.51 ± 0.05 66.03 ± 0.10 56.53 ± 0.12 68.59 ± 0.05 59.94 ± 0.23 65.78 ± 0.29 65.36 ± 0.11 72.55 ± 0.05
𝛽 = 5 65.30 ± 0.16 65.35 ± 0.05 56.17 ± 0.45 68.29 ± 0.20 58.40 ± 0.04 65.19 ± 0.10 64.48 ± 0.09 72.41 ± 0.08
𝛽 = 0.5 64.50 ± 0.24 64.56 ± 0.31 52.50 ± 0.30 67.95 ± 0.15 57.24 ± 0.23 63.08 ± 0.07 63.53 ± 0.13 71.12 ± 0.03

EMINST 𝑖𝑖𝑑 90.86 ± 0.06 91.10 ± 0.19 91.50 ± 0.30 90.65 ± 0.02 89.76 ± 0.17 91.79 ± 0.28 93.11 ± 0.55 93.70 ± 0.02
𝛽 = 5 91.32 ± 0.18 91.04 ± 0.11 91.79 ± 0.23 90.70 ± 0.06 89.44 ± 0.38 91.64 ± 0.19 92.84 ± 0.16 93.58 ± 0.02
𝛽 = 0.5 90.65 ± 0.09 91.09 ± 0.08 90.44 ± 1.20 90.83 ± 0.02 90.06 ± 0.18 91.57 ± 0.31 92.29 ± 0.24 92.49 ± 0.05
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Figure 3: Learning curve under different degree of class imbalance. (a) 𝛽 = 0.5, (b) 𝛽 = 5, (c) 𝑖𝑖𝑑 on CIFAR10 dataset
Table 2: The communication cost needed for various FLmeth-
ods to achieve the same accuracy as 100 rounds of FedAvg on
CIFAR10 and CIFAR100 (𝛽 = 0.5).

CIFAR10 CIFAR100

rounds param(MB) total(MB) rounds param(MB) total(MB)

FedAvg 100 (7.6×) 3.53 353 (6.7×) 100 (3.3×) 1077.5 107750 (3.3×)

FedProx 52 (4×) 3.53 183.56 (3.5×) 75 (2.5×) 1077.5 80812.5 (2.4×)

Scaffold 36 (2.7×) 7.06 254.16 (4.8×) ⧹ 2155 > 215500

MOON 29 (2.2×) 3.53 102.37 (1.9×) 43 (1.4×) 1077.5 46332.5 (1.4×)

FedDyn 25 (1.9×) 3.53 88.25 (1.6×) ⧹ 1077.5 > 107750

FedDC 28 (2.1×) 7.06 197.68 (3.7×) ⧹ 2155 > 215500

FedProc 20 (1.5×) 3.53+0.09 72.4 (1.3×) ⧹ 1077.5+0.97 > 107847

FedCD 13 (1×) 3.72+0.29 52.13 (1×) 30 (1×) 1079.4+2.9 32469 (1×)
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Figure 4: The accuracy of all methods on local epochs.

Degree of Class Imbalance. Figure 3 displays the learning curves
of all methods on CIFAR10 under different degrees of class imbal-
ance, where FedCD achieves the best results in 𝛽 = 0.5, 𝛽 = 5,
and 𝑖𝑖𝑑 scenarios respectively. As shown in Figure 3(a) and 3(b),
FedCD exhibits rapid and steady growth from the beginning, and its

Table 3: The accuracy (%) of all methods with different num-
bers of clients and varying communication rounds on CI-
FAR100.

Method Client Number=50 Client Number=100
100 rounds 200 rounds 250 rounds 500 rounds

FedAvg 51.4 55.8 51.0 55.0
FedProx 51.3 56.2 51.3 54.6
Scaffold 35.3 43.6 37.4 44.5
Moon 57.9 63.0 56.9 61.8
FedDyn 52.0 56.8 53.5 55.3
FedDC 53.2 58.4 54.2 57.3
FedProc 54.6 60.8 55.7 59.6
FedCD 59.7 66.3 59.43 66.31

final accuracy is also higher than that of other methods. Figure 3(c)
reveals that although the initial growth rates of MOON, FedProc
and FedAvg are large, FedCD’s accuracy surpasses them after 20
rounds, demonstrating the effectiveness of our method.
Various Local Epochs and Batch Sizes. We investigate the influ-
ence of local epoch and batch size on the overall performance of
the global model. The findings are depicted in Figure 4 and Figure 6.
The accuracy of SCAFFOLD is too low to display when the number
of local epochs is set to 1 on CIFAR100 (20.4%). When the local
epoch is set to 1 on the CIFAR100 dataset, both FedCD and FedProc
struggle to learn accurate prototypes due to the dataset’s numerous
classes and insufficient local update epochs. Consequently, FedCD
does not yield optimal results. Moreover, FedCD performs well
when the local epoch is large, indicating its effectiveness in miti-
gating classifier bias. On CIFAR100, increasing the batch size leads
to a decrease in the number of local update rounds, resulting in
a somewhat diminished model performance. This phenomenon
is observed across all methods. Nevertheless, FedCD consistently
achieves superior outcomes for all batch sizes.
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Figure 5: Parameter sensitivity analysis for 𝜆, 𝛾 ,𝑀 and 𝛼 on CIFAR10 dataset with 𝛽 = 0.5.
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Figure 6: The accuracy of all methods under different batch
size.
Different Number of Clients. To assess the scalability of FedCD,
we test it with a larger number of clients on the CIFAR100 dataset.
We set the number of clients to 50 and 100, respectively, with only
20% of the clients participating in federated learning in each round
(𝜂 = 0.2). For example, when the number of clients is set to 100, we
randomly select 20 clients to participate in the local update before
each communication and then aggregate these 20 models as the
global model. The results are shown in Table 3. For 100 clients,
compared with Moon, FedCD achieves 2.53% higher accuracy at
250 rounds, and achieves 4.51% higher accuracy at 500 rounds. The
results demonstrate the scalability of FedCD when a large number
of clients participate in federated learning.

4.4 Parameter Sensitivity and Ablation Study
The sensitivity of four important parameters𝛾 , 𝜆,𝑀 and 𝛼 in FedCD
are studied. We use the CIFAR10 dataset for parameter sensitiv-
ity analysis, selecting 𝜆 and 𝛾 from [0.01, 0.05, 0.1, 0.5, 1],𝑀 from
[1, 3, 5, 7, 9] and 𝛼 from [0.01, 0.05, 0.1, 0.2, 0.3]. Figure 5 illustrates
the accuracy of FedCD under different parameters with box plots.
We can observe that the performance of FedCD remains relatively
stable across a wide range of parameter variations, indicating that
our method is not sensitive to parameters.

Ablation experiments are performed on CIFAR10 and CIFAR100,
respectively. To assess the efficacy of each component in FedCD, we
introduce six degraded methods. (1) FedCD-hpc: Remove hierar-
chical prototype contrastive learning from FedCD and update fine-
grained local prototypes by computing feature means. (2) FedCD-
dkd: Remove global information distillation loss from FedCD. (3)
FedCD-bpr: Remove batch prototype regularization loss from
FedCD. (4) FedCD-acla: Remove the adaptive class-level aggre-
gation and aggregate global model like FedAvg. (5) FedCD/kd:
Replace global information distillation loss with KL divergence

Table 4: Ablation study of FedCD in terms of accuracy (%).

Method CIFAR10 CIFAR100
FedCD 73.1 71.12

FedCD-hpc 71.74 68.01
FedCD-dkd 72.25 70.24
FedCD-bpr 72.08 69.99
FedCD-acla 72.05 69.61
FedCD/kd 72.25 70.3
FedCD/cla 72.34 70.14

substitution loss. (6) FedCD/cla: Employ the ratio of fine-grained
samples number on the client to the total number of fine-grained
samples as a weight to replace the adaptive weight for aggregating
fine-grained global classifiers. The experimental results of ablation
study are shown in Table 4. FedCD achieves superior performance
compared to each degraded method. The ablation experiment re-
sults reveal that by integrating all components of FedCD, we es-
tablish a federated learning framework that effectively tackles the
classifier bias issue in class-imbalanced federated learning.

5 CONCLUSION

In this paper, we introduce a framework to address classifier bias
in non-IID federated learning. Our proposed method integrates
fine-grained prototype learning, global information knowledge dis-
tillation, and adaptive class-level classifier aggregation within a
unified framework. By correcting classifier bias at different stages
of federated learning including representation and classifier learn-
ing on clients, as well as global aggregation on server, our method
outperforms existing non-IID federated learning methods. Notably,
we introduce hierarchical prototype contrastive learning, enabling
the acquisition of fine-grained prototypes for each class, which
better captures the global distribution compared to using a single
prototype. We leverage global information distillation to decouple
global prediction information, effectively correcting local classifier
bias. Furthermore, our framework discriminates the quality of class
vectors in classifiers, mitigating the impact of classifier bias during
the aggregation stage. Extensive experiments demonstrate the su-
perior performance of FedCD compared to state-of-the-art non-IID
federated learning methods.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foun-
dation of China (62272058, 62192784, U22B2038, 62172056) and
CCF-Tencent Open Research Fund.

9001



FedCD: A Classifier Debiased Federated Learning Framework for Non-IID Data MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

REFERENCES
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina,

Paul N Whatmough, and Venkatesh Saligrama. 2021. Federated learning based
on dynamic regularization. arXiv preprint arXiv:2111.04263 (2021).

[2] Durmus Alp Emre Acar, Yue Zhao, Ruizhao Zhu, RamonMatas, MatthewMattina,
Paul Whatmough, and Venkatesh Saligrama. 2021. Debiasing model updates
for improving personalized federated training. In International Conference on
Machine Learning. PMLR, 21–31.

[3] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2021. Provably secure
federated learning against malicious clients. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35. 6885–6893.

[4] Hong-You Chen and Wei-Lun Chao. 2020. Fedbe: Making bayesian model ensem-
ble applicable to federated learning. arXiv preprint arXiv:2009.01974 (2020).

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[6] Xiaomeng Chen, Yingxia Shao, Zhe Xue, and Ziqiang Yu. 2021. Multi-modal
COVID-19 discovery with collaborative federated learning. In 2021 IEEE 7th
International Conference on Cloud Computing and Intelligent Systems (CCIS). IEEE,
52–56.

[7] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. 2017.
EMNIST: Extending MNIST to handwritten letters. In 2017 international joint
conference on neural networks (IJCNN). IEEE, 2921–2926.

[8] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. 2021.
Exploiting shared representations for personalized federated learning. In Inter-
national Conference on Machine Learning. PMLR, 2089–2099.

[9] Don Kurian Dennis, Tian Li, and Virginia Smith. 2021. Heterogeneity for the
win: One-shot federated clustering. In ICML. PMLR, 2611–2620.

[10] Kate Donahue and Jon Kleinberg. 2021. Model-sharing games: Analyzing feder-
ated learning under voluntary participation. In AAAI, Vol. 35. 5303–5311.

[11] Haya Elayan, Moayad Aloqaily, and Mohsen Guizani. 2021. Deep federated
learning for IoT-based decentralized healthcare systems. In 2021 International
Wireless Communications and Mobile Computing (IWCMC). IEEE, 105–109.

[12] Haya Elayan, Moayad Aloqaily, and Mohsen Guizani. 2021. Sustainability of
healthcare data analysis IoT-based systems using deep federated learning. IEEE
Internet of Things Journal 9, 10 (2021), 7338–7346.

[13] Angelo Feraudo, Poonam Yadav, Vadim Safronov, Diana Andreea Popescu,
Richard Mortier, Shiqiang Wang, Paolo Bellavista, and Jon Crowcroft. 2020.
CoLearn: Enabling federated learning in MUD-compliant IoT edge networks. In
Proceedings of the Third ACM International Workshop on Edge Systems, Analytics
and Networking. 25–30.

[14] Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. 2021. Clustered
sampling: Low-variance and improved representativity for clients selection in
federated learning. In ICML. PMLR, 3407–3416.

[15] Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and Cheng-Zhong Xu.
2022. FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 10112–10121.

[16] Zeli Guan, Yawen Li, Zhe Xue, Yuxin Liu, Hongrui Gao, and Yingxia Shao. 2021.
Federated graph neural network for cross-graph node classification. In 2021 IEEE
7th International Conference on Cloud Computing and Intelligent Systems (CCIS).
IEEE, 418–422.

[17] Sungwon Han, Sungwon Park, Fangzhao Wu, Sundong Kim, Chuhan Wu, Xing
Xie, and Meeyoung Cha. 2022. FedX: Unsupervised Federated Learning with
Cross Knowledge Distillation. arXiv preprint arXiv:2207.09158 (2022).

[18] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 9729–9738.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. 770–778.

[20] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the effects
of non-identical data distribution for federated visual classification. arXiv preprint
arXiv:1909.06335 (2019).

[21] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2020. Federated visual
classification with real-world data distribution. In ECCV. Springer, 76–92.

[22] Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei,
and Yong Zhang. 2021. Personalized cross-silo federated learning on non-iid data.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 7865–7873.

[23] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebas-
tian Stich, and Ananda Theertha Suresh. 2020. Scaffold: Stochastic controlled
averaging for federated learning. In International Conference on Machine Learning.
PMLR, 5132–5143.

[24] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[25] Gen Li, Varun Jampani, Laura Sevilla-Lara, Deqing Sun, Jonghyun Kim, and
Joongkyu Kim. 2021. Adaptive Prototype Learning and Allocation for Few-Shot
Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). 8334–8343.
[26] Qinbin Li, Bingsheng He, and Dawn Song. 2021. Model-contrastive federated

learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 10713–10722.

[27] Qiushi Li, Wenwu Zhu, Chao Wu, Xinglin Pan, Fan Yang, Yuezhi Zhou, and
Yaoxue Zhang. 2020. InvisibleFL: federated learning over non-informative inter-
mediate updates against multimedia privacy leakages. In Proceedings of the 28th
ACM International Conference on Multimedia. 753–762.

[28] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. 2021. Ditto: Fair and
robust federated learning through personalization. In International Conference on
Machine Learning. PMLR, 6357–6368.

[29] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. Federated optimization in heterogeneous networks.
Proceedings of Machine Learning and Systems 2 (2020), 429–450.

[30] Yawen Li, Wenling Li, and Zhe Xue. 2022. Federated learning with stochastic
quantization. International Journal of Intelligent Systems 37, 12 (2022), 11600–
11621.

[31] Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. 2021. No
fear of heterogeneity: Classifier calibration for federated learning with non-iid
data. Advances in Neural Information Processing Systems 34 (2021), 5972–5984.

[32] Yongqiang Ma, Yingxia Shao, Zhe Xue, and Ziqiang Yu. 2021. Urban Fatigue Driv-
ing Prediction With Federated Learning. In 2021 IEEE 7th International Conference
on Cloud Computing and Intelligent Systems (CCIS). IEEE, 47–51.

[33] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[34] Umberto Michieli and Pietro Zanuttigh. 2021. Continual semantic segmentation
via repulsion-attraction of sparse and disentangled latent representations. In
CVPR. 1114–1124.

[35] Xutong Mu, Yulong Shen, Ke Cheng, Xueli Geng, Jiaxuan Fu, Tao Zhang, and
Zhiwei Zhang. 2023. Fedproc: Prototypical contrastive federated learning on
non-iid data. Future Generation Computer Systems 143 (2023), 93–104.

[36] Qiying Pan, Yifei Zhu, and Lingyang Chu. 2023. Lumos: Heterogeneity-aware Fed-
erated Graph Learning over Decentralized Devices. IEEE International Conference
on Data Engineering (ICDE) (2023).

[37] Yu Qiao, Md Munir, Apurba Adhikary, Huy Q Le, Avi Deb Raha, Chaoning
Zhang, Choong Seon Hong, et al. 2023. MP-FedCL: Multi-Prototype Federated
Contrastive Learning for Edge Intelligence. arXiv preprint arXiv:2304.01950
(2023).

[38] Hao Sun, Yuan Jia, Hui Dong, Dibo Dong, and Jianping Zheng. 2020. Combining
additive manufacturing with microfluidics: an emerging method for developing
novel organs-on-chips. Current Opinion in Chemical Engineering 28 (2020), 1–9.

[39] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and
Chengqi Zhang. 2022. Fedproto: Federated prototype learning across hetero-
geneous clients. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 36. 8432–8440.

[40] Minxue Tang, Xuefei Ning, Yitu Wang, Jingwei Sun, Yu Wang, Hai Li, and Yiran
Chen. 2022. FedCor: Correlation-Based Active Client Selection Strategy for
Heterogeneous Federated Learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 10102–10111.

[41] Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection reg-
ulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing
10, 3152676 (2017), 10–5555.

[42] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and
Yasaman Khazaeni. 2020. Federated learning with matched averaging. arXiv
preprint arXiv:2002.06440 (2020).

[43] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. 2020.
Tackling the objective inconsistency problem in heterogeneous federated opti-
mization. Advances in neural information processing systems 33 (2020), 7611–7623.

[44] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federatedmachine
learning: Concept and applications. ACM Transactions on Intelligent Systems and
Technology (TIST) 10, 2 (2019), 1–19.

[45] Yu Zang, Zhe Xue, Shilong Ou, Yunfei Long, Hai Zhou, and Junping Du. 2023.
FedPcf: An Integrated Federated Learning Framework with Multi-Level Prospec-
tive Correction Factor. In Proceedings of the 2023 ACM International Conference
on Multimedia Retrieval. 490–498.

[46] Lin Zhang, Li Shen, Liang Ding, Dacheng Tao, and Ling-Yu Duan. 2022. Fine-
tuning global model via data-free knowledge distillation for non-iid federated
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 10174–10183.

[47] Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. 2022. Decoupled
Knowledge Distillation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 11953–11962.

[48] Jian Zhao, Jianshu Li, Xiaoguang Tu, Fang Zhao, Yuan Xin, Junliang Xing,
Hengzhu Liu, Shuicheng Yan, and Jiashi Feng. 2019. Multi-prototype networks
for unconstrained set-based face recognition. arXiv preprint arXiv:1902.04755
(2019).

9002


	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Overall Framework
	3.2 Fine-Grained Global Prototype Aggregation
	3.3 Fine-Grained Prototype Learning
	3.4 Global Information Distillation
	3.5 Debiased Classifier Learning
	3.6 Adaptive Class-Level Classifier Aggregation
	3.7 Discussion on Privacy Protection

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance Comparison
	4.3 Performance Analysis in Different Settings
	4.4 Parameter Sensitivity and Ablation Study

	5 Conclusion
	Acknowledgments
	References



