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Abstract

In this tutorial on deep learning model complexity, we will

provide an overview of the model complexity problem includ-

ing motivation, historical notes, technical challenges, and

fundamental properties. We will discuss two fundamental

questions: model expressive capacity, and effective model

complexity. We will connect model complexity with other

important problems (e.g., generalization) to illustrate how

model complexity can help tackle these problems. We will

discuss some interesting and promising future directions for

model complexity.
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1 Introduction

Deep learning is disruptive in many applications mainly
due to its superior performance. At the same time,
many fundamental questions about deep learning re-
main unanswered. Model complexity of deep neural
networks is one of them. Model complexity is concerned
about how complicated a problem that a deep model can
express and how nonlinear and complex the function of
a model with given parameters can be.

In machine learning, data mining and deep learning,
model complexity is always an important fundamental
problem. Model complexity affects learnability of mod-
els on specific problems and data, as well as general-
ization ability of the model on unseen data. Moreover,
the complexity of a learned model is affected not only
by the model architecture itself, but also by the data
distribution, data complexity, and information volume.
In recent years, model complexity has become a more
and more active direction, and has developed theoretical
guiding significance in many areas, such as model archi-
tecture searching, graph representation, generalization
study and model compression.

We propose this tutorial to overview the state-of-
the-art research on deep learning model complexity. We
summarize the model complexity studies into two di-
rections: model expressive capacity and effective model
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complexity, and review the latest progress on these two
directions.

� Model expressive capacity. Expressive capac-
ity captures the capacity of deep models in ex-
pressing complex problems. Approaches for classi-
cal model expressive capacity study (e.g., VC di-
mension) are with limited applicability on deep
learning models due to the complicated structure
of deep models. Recent works explore this prob-
lem from the perspective of the effectiveness of net-
work depth [2, 12, 13], the effectiveness of network
width [11], and the expressible functional space of
deep models [5, 8].

� Effective model complexity. Effective complex-
ity reflects the practical, effective complexity of
the functions of deep models with given parame-
ters. Exploring effective model complexity calls for
feasible effective complexity measures [7, 16]. Be-
sides, a series of studies find that even with over-
parameterized architecture and high expressive ca-
pacity, the effective complexity of a learned neural
network may still be much lower than the expres-
sive capacity [6].

We will discuss the applications of model complexity in
generalization, optimization and others to demonstrate
the usefulness of model complexity. We will conclude
this tutorial and discuss several interesting and promis-
ing future directions.

2 Tutorial Outline

This tutorial will be organized into five sessions. Please
visit our tutorial website for detailed tutorial materials:
http://sfu.ca/~huxiah/sdm21_tutorial.

In the first section, we will provide an overview
of the model complexity problem including motivation,
historical notes, technical challenges and fundamental
properties.

In the second section, we will discuss the expressive
capacity of deep architectures. That is, what functions
and problems can be expressed, and how architectures
affect the expressive capacity.

In the third section, we will discuss the effective
model complexity. That is, what complexity of a model
with given parameters can be.
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In the fourth section, we will connect model com-
plexity with several important issues: generalization
capability, optimization, model selection, to show how
model complexity helps tackle these problems.

In the last section, we will summarize and discuss
some open problems and potential future directions.

The tentative outline and schedule of the 2-hour
tutorial are shown below.

1. Introduction and Overview (10 mins)

1.1 Motivation

1.2 Model complexity

1.3 Historical notes on model complexity

2. Expressive Capacity (30 mins)

2.1 Effectiveness of model depth

2.2 Effectiveness of model width

2.3 Expressible functional spaces

3. Effective Model Complexity (30 mins)

3.1 General measures of effective complexity

3.2 High-capacity low-reality phenomenon

4. Application Examples of Deep Learning Model
Complexity (30 mins)

4.1 Model complexity in understanding generalization

4.2 Model complexity in optimization

4.3 Model complexity in model selection and design

5. Summary and future directions (20 mins)

3 Target Audience

The tutorial will be largely self-contained. We only as-
sume that the audience understands the basic concepts
of neural networks. We will introduce the advanced con-
cepts and use concrete examples to explain them.

This tutorial mainly targets at three groups of au-
dience. First, the researchers and graduate students
who are interested in understanding deep learning mod-
els and model complexity will learn the frontier of this
new direction. Second, our tutorial is also attractive
to the researchers who are interested in applying ma-
chine learning theory and techniques to optimize data
analysis and processing, and provides them a new angle
from model complexity. Last, the industry practition-
ers and data scientists who are interested in the general
intuition and ideas about model complexity will find
practical guidelines from this tutorial on model design
and selection from the model complexity perspective.
Through the tutorial, the audience can quickly under-
stand the fundamental ideas, the latest progress, the
major challenges and the research opportunities about
model complexity.
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analysis techniques for novel data intensive applications.
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tional advertising, and a variety of machine learning
applications. Prior to that, he was a senior scientist,
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livery platform. He also used to work at Yahoo! Labs
as a Scientist and did a lot of studies on content op-
timization and personalization for the Yahoo! key con-
tent modules. He has authored tens of research papers
published at several well-recognized AI-related confer-
ences with thousands of citations, such as KDD, ICDE,
AAAI, NIPS and ICML. He has been served as Program
Committee Member/Peer Reviewer of many influential
academic conferences and journals.

Weiqing Liu is a Senior Researcher at Microsoft Re-
search. He holds a Ph.D. degree in the Department of
Computer Science from the University of Science and
Technology of China. His research interests focus on
data mining and machine learning. He is actively trans-
ferring research to significant real-world applications,
especially to finance scenarios. Currently, one of his
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